Stochastic gravitational wave background constraints from Gaia Data Release 3

Santiago Jaraba (IFT, Madrid)

Belgian-Dutch Gravitational Wave Meeting, 24th October 2023

Based on S. Jaraba, J. García-Bellido, S. Kuroyanagi, S. Ferraiuolo, M. Braglia, MNRAS 524 (2023) 3, 3609-3622

de Madrid

E INNOVACIÓN

Background image: © ESA/Gaia/DPAC/A. Moitinho, CC BY-SA 3.0 IGO

The stochastic gravitational wave background

- Detectors as LVK detect intense GW signals from individual BBH.
- Weaker, unresolved signals would form a continuous background: SGWB.
- Lots of sources would also leave an imprint in this background: very rich field!
 - Also close hyperbolic encounters (J. García-Bellido, S. Jaraba, S. Kuroyanagi, arXiv:2109.11376).
- Important to look for this background in all possible frequencies.

LIGO and Virgo collaborations. arXiv:0910.5772

The stochastic gravitational wave background

We can use astrometry to constrain this region!

LIGO and Virgo collaborations. arXiv:0910.5772

Overview of Gaia mission

- Launched by ESA in December 2013, expected to operate until 2025.
- Data Release 3 (June 2022): 1.81 billion objects, 34 months of operation.
- Low intrinsic proper motions needed \rightarrow focus on Quasi Stellar Objects (QSO).
- No "official" Gaia QSO catalog, but "QSO candidate" list provided.
- By cleaning this sample, we can get purer datasets.

We have our data ready.

Now, how to use it to set constraints on SGWB amplitude?

Gravitational waves from astrometry

- Studied in the 1980s and 90s (<u>E. V. Linder 1986</u>, <u>Braginsky et al. 1990</u>, <u>Pyne</u> <u>et al. 1995</u>, <u>Gwinn et al. 1996</u>, etc.).
- Recent review by <u>Book & Flanagan 2010, arXiv:1009.41920</u>.
- We observe light from distant stars.
- The passage of a GW can alter the observed position.

D. P. Mihaylov et al., arXiv:1804.006608 (modified to match Book&Flanagan notation)

Angular deflection spectrum from a SGWB

• Under distant source limit assumption (distance to source >> GW wavelength),

$$\left\langle \delta \mathbf{n}(\mathbf{n},t)^2 \right\rangle = \theta_{\rm rms}^2 = \frac{1}{4\pi^2} \int d\ln f \left(\frac{H_0}{f}\right)^2 \Omega_{\rm gw}(f)$$

Differentiating,

$$\left< \delta \dot{\mathbf{n}}(\mathbf{n},t)^2 \right> = \int d\ln f H_0^2 \Omega_{\rm gw}(f)$$

- $f_{max} \leq T^{-1}$. For Gaia DR3, T = 2.84 years.
- In our case, 4×10^{-18} Hz $\leq f \leq 1 \times 10^{-8}$ Hz.

$$\Omega_{\rm GW}(f) \sim \langle \mu(f)^2 \rangle / H_0^2$$

Multipole decomposition

$$\vec{S}_{lm}(\alpha, \delta) = \frac{1}{l(l+1)} \nabla Y_{lm}(\alpha, \delta)$$
$$\vec{T}_{lm}(\alpha, \delta) = -\frac{1}{l(l+1)} \hat{n} \times \nabla Y_{lm}(\alpha, \delta)$$

 $P_l = P_l^s + P_l^t$ 70 h_{70} km s⁻¹ Mpc⁻¹

- A vector field needs two basis: spheroidal/electric and toroidal/magnetic.
- We run MCMCs to fit proper motion data to a generic vector field up to I = 2.

$$\vec{V}(\alpha, \delta) = \sum_{\substack{r=s,t \ R=S,T}} \sum_{l=1}^{\infty} \left[r_{l0} \vec{R}_{l0} + 2 \sum_{m=1}^{l} \left(r_{lm}^{\text{Re}} \vec{R}_{lm}^{\text{Re}} - r_{lm}^{\text{Im}} \vec{R}_{lm}^{\text{Im}} \right) \right]$$

• Power per multipole and mode

$$P_l^r = \sum_{m=-l}^l |r_{lm}|^2 = r_{l0}^2 + 2\sum_{m=1}^l (r_{lm}^{\text{Re}})^2 + (r_{lm}^{\text{Im}})^2$$

$$\Omega_{\rm GW} = \frac{6}{5} \frac{1}{4\pi} \frac{P_2}{H_0^2} = 0.000438 \frac{P_2}{(1 \ \mu \rm{as/yr})^2} h_{70}^{-2} H_0 =$$

Previous work (Darling, Truebenbach, Paine, arXiv:1804.06986)

- Darling et al. followed a very similar procedure to ours to get $\Omega_{GW} \lesssim 0.0064$.
- Two datasets: quasars from VLBA, combination of VLBA + Gaia DR1.
- Only 711 and 508 sources (1000 times less than our datasets).
- However, much better resolution! A factor 30-40 better than ours.
 - The combination of both makes the expected results comparable.
- Main differences with our analysis:
 - They fit the dipole and quadrupole separately. This produces a less conservative result.
 - \circ Their code underestimates the errors in a factor ~2.
- We thus decided to reanalyse their work for a better comparison.

Results

- For the intersection dataset, quadrupole power of order 100 (μas/yr)².
- No evidence for detection \rightarrow we provide 95% upper bound $\Omega_{GW} \leq 0.087$.
- Our other datasets behave as expected:
 - The astrometric is similar but slightly more contaminated.
 - The masked behaves a bit worse, but still within 30%.
 - The pure one does much worse due to contamination. Still, within the order of magnitude.
- We conclude that our results are robust under dataset choice within the Gaia DR3 QSO candidates sample.

Dataset	$\sqrt{P_2} \; (\mu {\rm as/yr})$	$h_{70}^2\Omega_{ m GW}$	$h_{70}^2 \Omega_{\rm GW}^{\rm up}$ (95%)
Masked	12.51(1.81)	0.069(0.021)	0.114
Pure	23.15(2.01)	0.235(0.040)	0.295
Astrometric	10.13(1.73)	0.045(0.017)	0.089
Intersection	9.53(1.73)	0.040(0.017)	0.087
VLBA	2.73(1.23)	0.0033(0.0056)	0.024
VLBA+Gaia DR1	5.30(1.36)	0.0123(0.0077)	0.034

Results

- For VLBA and VLBA+Gaia datasets, we worsen a bit the results by Darling et al. (0.0064 and 0.011).
 - Expected due to the differences in our works.
- Still, VLBA places better constraints than Gaia DR3.
- Also expected due to the much better resolution in VLBA, caused by the larger observing period (22.2 years vs 2.84). Dataset $\sqrt{P_2} (\mu as/yr) \frac{h_{70}^2 \Omega_{GW}}{h_{70}^2 \Omega_{GW}} h_{70}^2 \Omega_{GW}^{up}$

Dataset	$\sqrt{P_2} \; (\mu { m as/yr})$	$h_{70}^2\Omega_{ m GW}$	$h_{70}^2 \Omega_{\rm GW}^{ m up}$ (95%)
Masked	12.51(1.81)	0.069(0.021)	0.114
Pure	23.15(2.01)	0.235(0.040)	0.295
Astrometric	10.13(1.73)	0.045(0.017)	0.089
Intersection	9.53(1.73)	0.040(0.017)	0.087
VLBA	2.73(1.23)	0.0033(0.0056)	0.024
VLBA+Gaia DR1	5.30(1.36)	0.0123(0.0077)	0.034

Conclusions and future prospects

- Gaia DR3 (2.84 yr) $\rightarrow \Omega_{GW} \leq 0.087$ for 4 × 10⁻¹⁸ Hz $\leq f \leq 1 \times 10^{-8}$ Hz.
- VLBA update $\rightarrow \Omega_{GW} \lesssim 0.024$ for 6 × 10⁻¹⁸ Hz $\lesssim f \lesssim 1 \times 10^{-9}$ Hz.
- Gaia improves proper motion resolution like T^{3/2}: 2.7 and 6.6 improvement factors for DR4 (5.5 yr) and DR5 (10 yr) \rightarrow 7.2 and 44 improvement for Ω_{GW} .
- Extrapolating our constraints, $\Omega_{GW} \lesssim 0.012$ (DR4) and $\Omega_{GW} \lesssim 0.0020$ (DR5).
 - Conservative prediction: number of sources will likely increase.
 - For DR5, we will also have the full time series, which will help further cleaning the data.
- Proposed mission Theia with 60 better angular resolution & 100 more sources $\rightarrow O(10^{-10})!$
- More modest constraints than standard GW detectors, but completely different freq. range.
 - Necessary for signals such as supermassive black hole binaries or looking for new physics.

Thank you for your attention!

Backup: angular deflection spectrum from a SGWB

• Assuming pure Gaussian fluctuations and equal distribution of sources in the sky, it is usually assumed we can get root mean square proper motions of order

 $\Delta \theta / (T \sqrt{N})$

so we could set constraints

 $\Omega_{\rm gw}(f) \lesssim \frac{\Delta \theta^2}{N T^2 H_0^2}$

- \circ $\Delta \theta$ angular resolution, T observing period, N number of sources.
- These estimations tend to be optimistic. However, good to have them in mind.
- Ω_{GW} scales like N⁻¹, while the resolution enters squared.