Stochastic gravitational wave background constraints from Gaia Data Release 3

Santiago Jaraba (IFT, Madrid)
Belgian-Dutch Gravitational Wave Meeting, 24th October 2023
Based on S. Jaraba, J. García-Bellido, S. Kuroyanagi, S. Ferraiuolo, M. Braglia, MNRAS 524 (2023) 3, 3609-3622

The stochastic gravitational wave background

- Detectors as LVK detect intense GW signals from individual BBH.
- Weaker, unresolved signals would form a continuous background: SGWB.
- Lots of sources would also leave an imprint in this background: very rich field! - Also close hyperbolic encounters (J. Garcia-Bellido, S. Jaraba, S. Kuroyanagi, arXiv:2109.11376).
- Important to look for this background in all possible frequencies.

LIGO and Virgo collaborations. arXiv:0910.5772

The stochastic gravitational wave background

We can use astrometry to constrain this region!

LIGO and Virgo collaborations, arXiv:0910.5772

Overview of Gaia mission

- Launched by ESA in December 2013, expected to operate until 2025.
- Data Release 3 (June 2022): 1.81 billion objects, 34 months of operation.
- Low intrinsic proper motions needed \rightarrow focus on Quasi Stellar Objects (QSO).
- No "official" Gaia QSO catalog, but "QSO candidate" list provided.
- By cleaning this sample, we can get purer datasets.

3rd cleanest

$(87,441)$

(816,644)

02
 Pure and astrometric intersection

We have our data ready.

Now, how to use it to set constraints on SGWB amplitude?

Gravitational waves from astrometry

- Studied in the 1980s and 90s (E. V. Linder 1986, Braginsky et al. 1990, Pyne et al. 1995, Gwinn et al. 1996, etc.).
- Recent review by Book \& Flanagan 2010, arXiv:1009.41920.
- We observe light from distant stars.
- The passage of a GW can alter the observed position.

D. P. Mihaylov et al., arXiv:1804.006608 (modified to match
Book\&Flanagan notation)

Angular deflection spectrum from a SGWB

- Under distant source limit assumption (distance to source >> GW wavelength),

$$
\left\langle\delta \mathbf{n}(\mathbf{n}, t)^{2}\right\rangle=\theta_{\mathrm{rms}}^{2}=\frac{1}{4 \pi^{2}} \int d \ln f\left(\frac{H_{0}}{f}\right)^{2} \Omega_{\mathrm{gw}}(f)
$$

- Differentiating,

$$
\left\langle\delta \dot{\mathbf{n}}(\mathbf{n}, t)^{2}\right\rangle=\int d \ln f H_{0}^{2} \Omega_{\mathrm{gw}}(f)
$$

- $f_{\text {max }} \leqslant T^{-1}$. For Gaia DR3, $T=2.84$ years.
- In our case, $4 \times 10^{-18} \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 1 \times 10^{-8} \mathrm{~Hz}$.

$$
\Omega_{\mathrm{GW}}(f) \sim\left\langle\mu(f)^{2}\right\rangle / H_{0}^{2}
$$

Multipole decomposition

$$
\vec{S}_{l m}(\alpha, \delta)=\frac{1}{l(l+1)} \nabla Y_{l m}(\alpha, \delta)
$$

$$
\vec{T}_{l m}(\alpha, \delta)=-\frac{1}{l(l+1)} \hat{n} \times \nabla Y_{l m}(\alpha, \delta)
$$

- A vector field needs two basis: spheroidal/electric and toroidal/magnetic.
- We run MCMCs to fit proper motion data to a generic vector field up to I = 2 .

$$
\vec{V}(\alpha, \delta)=\sum_{\substack{r=s, t \\ R=S, T}} \sum_{l=1}^{\infty}\left[r_{l 0} \vec{R}_{l 0}+2 \sum_{m=1}^{l}\left(r_{l m}^{\mathrm{Re}} \vec{R}_{l m}^{\mathrm{Re}}-r_{l m}^{\mathrm{Im}} \vec{R}_{l m}^{\mathrm{Im}}\right)\right]
$$

- Power per multipole and mode

$$
P_{l}^{r}=\sum_{m=-l}^{l}\left|r_{l m}\right|^{2}=r_{l 0}^{2}+2 \sum_{m=1}^{l}\left(r_{l m}^{\mathrm{Re}}\right)^{2}+\left(r_{l m}^{\mathrm{Im}}\right)^{2}
$$

$$
\Omega_{\mathrm{GW}}=\frac{6}{5} \frac{1}{4 \pi} \frac{P_{2}}{H_{0}^{2}}=0.000438 \frac{P_{2}}{(1 \mu \mathrm{as} / \mathrm{yr})^{2}} h_{70}^{-2} \quad H_{0}=70 h_{70} \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}-P^{s}+P_{t}^{t}
$$

Previous work (Darling, Truebenbach, Paine, arXiv:1804.06986)

- Darling et al. followed a very similar procedure to ours to get $\Omega_{\mathrm{cw}} \leqslant 0.0064$.
- Two datasets: quasars from VLBA, combination of VLBA + Gaia DR1.
- Only 711 and 508 sources (1000 times less than our datasets).
- However, much better resolution! A factor 30-40 better than ours.
- The combination of both makes the expected results comparable.
- Main differences with our analysis:
- They fit the dipole and quadrupole separately. This produces a less conservative result.
- Their code underestimates the errors in a factor ~2.
- We thus decided to reanalyse their work for a better comparison.

Results

- For the intersection dataset, quadrupole power of order $100(\mu a s / y r)^{2}$.
- No evidence for detection \rightarrow we provide 95% upper bound $\Omega_{\mathrm{GW}} \leq 0.087$.
- Our other datasets behave as expected:
- The astrometric is similar but slightly more contaminated.
- The masked behaves a bit worse, but still within 30%.
- The pure one does much worse due to contamination. Still, within the order of magnitude.
- We conclude that our results are robust under dataset choice within the Gaia DR3 QSO candidates sample.

Dataset	$\sqrt{P_{2}}(\mu \mathrm{as} / \mathrm{yr})$	$h_{70}^{2} \Omega_{\mathrm{GW}}$	$h_{70}^{2} \Omega_{\mathrm{GW}}^{\mathrm{up}}(95 \%)$
Masked	$12.51(1.81)$	$0.069(0.021)$	0.114
Pure	$23.15(2.01)$	$0.235(0.040)$	0.295
Astrometric	$10.13(1.73)$	$0.045(0.017)$	0.089
Intersection	$9.53(1.73)$	$0.040(0.017)$	0.087
VLBA	$2.73(1.23)$	$0.0033(0.0056)$	0.024
VLBA+Gaia DR1	$5.30(1.36)$	$0.0123(0.0077)$	0.034

Results

- For VLBA and VLBA+Gaia datasets, we worsen a bit the results by Darling et al. (0.0064 and 0.011).
- Expected due to the differences in our works.
- Still, VLBA places better constraints than Gaia DR3.
- Also expected due to the much better resolution in VLBA, caused by the larger observing period (22.2 years vs 2.84).

Dataset	$\sqrt{P_{2}}(\mu \mathrm{as} / \mathrm{yr})$	$h_{70}^{2} \Omega_{\mathrm{GW}}$	$h_{70}^{2} \Omega_{\mathrm{GW}}^{\mathrm{up}}(95 \%)$
Masked	$12.51(1.81)$	$0.069(0.021)$	0.114
Pure	$23.15(2.01)$	$0.235(0.040)$	0.295
Astrometric	$10.13(1.73)$	$0.045(0.017)$	0.089
Intersection	$9.53(1.73)$	$0.040(0.017)$	0.087
VLBA	$2.73(1.23)$	$0.0033(0.0056)$	0.024
VLBA+Gaia DR1	$5.30(1.36)$	$0.0123(0.0077)$	0.034

Conclusions and future prospects

- Gaia DR3 (2.84 yr) $\rightarrow \Omega_{\mathrm{GW}} \leq 0.087$ for $4 \times 10^{-18} \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 1 \times 10^{-8} \mathrm{~Hz}$.
- VLBA update $\rightarrow \Omega_{\mathrm{GW}} \leqslant 0.024$ for $6 \times 10^{-18} \mathrm{~Hz} \leqslant \mathrm{f} \leqslant 1 \times 10^{-9} \mathrm{~Hz}$.
- Gaia improves proper motion resolution like $T^{3 / 2}: 2.7$ and 6.6 improvement factors for DR4 (5.5 yr) and DR5 (10 yr) $\rightarrow 7.2$ and 44 improvement for Ω_{cW}.
- Extrapolating our constraints, $\Omega_{\mathrm{GW}} \leqslant 0.012$ (DR4) and $\Omega_{\mathrm{GW}} \leqslant 0.0020$ (DR5).
- Conservative prediction: number of sources will likely increase.
- For DR5, we will also have the full time series, which will help further cleaning the data.
- Proposed mission Theia with 60 better angular resolution \& 100 more sources $\rightarrow \mathrm{O}\left(10^{-10}\right)$!
- More modest constraints than standard GW detectors, but completely different freq. range.
- Necessary for signals such as supermassive black hole binaries or looking for new physics.

Thank you for-your attention!

Backup: angular deflection spectrum from a SGWB

- Assuming pure Gaussian fluctuations and equal distribution of sources in the sky, it is usually assumed we can get root mean square proper motions of order

$$
\Delta \theta /(T \sqrt{N})
$$

so we could set constraints

- $\Delta \theta$ angular resolution, T observing period, N number of sources.
- These estimations tend to be optimistic. However, good to have them in mind.
- Ω_{GW} scales like N^{-1}, while the resolution enters squared.

