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Outline
• Introduction

• What is a stochastic-gravitational wave background (SGWB)?

• How to search for an SGWB with ground-based detectors?

• How to account for multiple components being present at the same time?

• This work
• Joint estimation of the amplitudes and ensemble properties of astrophysical 

SGWBs  from compact binary coalescences (CBCs), r-modes, and magnetars 

• Injection study to validate the method for realistic SGWB spectral shapes

• Results with the data from the LIGO-Virgo-KAGRA first three observing runs



What is a SGWB? – Definition and related quantities
A random gravitational-wave signal produced by a large number of weak, independent and unresolved sources.

‘‘Textboook’’ 
definition [1]

Characterisable only
statistically

Not decomposable into
separate and individually

detectable sources

Depending on details
of the observation

3
[1] Romano, J.D., Cornish, N.J. Living Rev Relativ 20, 2 (2017)
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ℎ𝐴
∗ 𝑓, ෝ𝒏 ℎ𝐴 𝑓′, ෝ𝒏′ =

1

16𝜋
𝑆ℎ 𝑓 𝛿 𝑓 − 𝑓′ 𝛿𝐴𝐴′ 𝛿

2(ෝ𝒏, 𝒏′)
Gaussian, stationary, 
unpolarized, isotropic

background

Stationarity

Unpolarized

Spacial homogeneity
and isotropy

One-sided GW strain power spectral density
(summed over polarizations and integrated over the sky)𝑆ℎ 𝑓 =

3𝐻0
2

2𝜋2
Ωgw(𝑓)

𝑓3

[1] Romano, J.D., Cornish, N.J. Living Rev Relativ 20, 2 (2017)
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http://www.thespectrumofriemannium.com/2019/10/19/log237-gw-music/


Search for SGWB with ground-based detectors

Answer to the question:
‘‘How to deal with the fact that SGWB is indistinguishable  from unidentified instrumental noise in a single detector?’’

Cross-correlation statistic: basic ideas

7



Search for SGWB with ground-based detectors

Answer to the question:
‘‘How to deal with the fact that SGWB is indistinguishable from unidentified instrumental noise in a single detector?’’

Cross-correlation statistic: basic ideas

2 different detectors data

Non-zero, in general (e.g. Schumann resonances, see Stavros 
Venikoudis’ poster), yet distinguishable from SGWB

Cross-correlated

Cross-correlation as estimator of 
the GW power spectral density

𝑑1 = ℎ + 𝑛1, 𝑑2 = ℎ + 𝑛2

መ𝐶12 = 𝑑1𝑑2 = ℎ2 + ℎ𝑛2 + 𝑛1ℎ + 𝑛1𝑛2 = ℎ2 ≡ 𝑆ℎ
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0 0

Ωgw 𝑓 = Ωref,𝛼
𝑓

𝑓ref

𝛼

Estimator for 𝛀𝐫𝐞𝐟 ≡ 𝛀𝐠𝐰(𝒇𝐫𝐞𝐟 = 𝟐𝟓 𝐇𝐳) 

Frequency power-law model

Non-zero, in general (e.g. Schumann resonances, see Stavros 
Venikoudis’ poster), yet distinguishable from SGWB
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0 0

Ωgw 𝑓 = Ωref,𝛼
𝑓

𝑓ref

𝛼

Estimator for 𝛀𝐫𝐞𝐟 ≡ 𝛀𝐠𝐰(𝒇𝐫𝐞𝐟 = 𝟐𝟓 𝐇𝐳) 

Frequency power-law model

Ωref,𝛼 f ≡
2

𝑇

𝑅𝑒 ሚ𝑑1 𝑓 ሚ𝑑2
∗(𝑓)

𝛾12 𝑓 𝑆𝛼(𝑓)
𝑆𝛼 𝑓 ≡

3𝐻0
2

10𝜋2
1

𝑓ref
3

𝑓

𝑓ref

𝛼−3

Isotropic overlap reduction function

Non-zero, in general (e.g. Schumann resonances, see Stavros 
Venikoudis’ poster), yet distinguishable from SGWB



Sathyaprakash
B.S. et al., 2019

Cosmological SGWB
and sensitivities of the 

experiments

Astrophysical SGWB

Regimbau T., 2011
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How to deal with 
multiple SGWBs at 

the same time?

https://arxiv.org/pdf/1903.09260.pdf
https://arxiv.org/pdf/1903.09260.pdf
https://iopscience.iop.org/article/10.1088/1674-4527/11/4/001/pdf


Limits of the standard formalism
• It estimates (and hence assumes the presence of) a single component at a time

• Still possible to include multiple components at the parameter estimation (PE) 
stage, assuming in the likelihood

Ω𝑔𝑤 𝑓 =

{𝛼}

Ω𝛼 𝑓 𝑤𝛼 𝑓 , 𝑤𝛼 ≡
𝑓

𝑓ref

𝛼
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Limits of the standard formalism
• It estimates (and hence assumes the presence of) a single component at a time

• Still possible to include multiple components at the parameter estimation (PE) 
stage, assuming in the likelihood

Ω𝑔𝑤 𝑓 =

{𝛼}

Ω𝛼 𝑓 𝑤𝛼 𝑓 , 𝑤𝛼 ≡
𝑓

𝑓ref

𝛼

• However
• this may be time consuming

• it does not consider possible correlations among different 𝛼

• A priori, the single-component estimator Ω𝛼 is likely to be biased in presence of 
multiple components (see next slides)

• How to include correlations among different 𝛼 before PE and get an unbiased, 
joint estimator for Ω𝛼? 13



Isotropic multi-component formalism
• See Boileau et al. 2021 for a summary of possible methods, here we follow Parida et al. 2016 

• Power-law model: Ωgw 𝑓 = σ{𝛼}Ω𝛼 𝑓 𝑤𝛼(𝑓) , 𝑤𝛼 ≡
𝑓

𝑓ref

𝛼
 

• Maximum Likelihood estimator for 𝛀 ≡ Ω𝛼, and covariance matrix 𝚺:

𝛀 = 𝚪−1 ⋅ 𝑿, 𝚺 = 𝚪−1,  𝝈𝟐 = diag(𝚺)

• (Broad-band) “Dirty map” and Fisher matrix:

𝑋𝛼 =
𝑡,𝑓
4Δ𝑓

ǁ𝑠𝐼
∗ 𝑡, 𝑓 ǁ𝑠𝐽(𝑡, 𝑓)

𝑃𝐼 𝑓 𝑃𝐽(𝑓)
𝛾𝐼𝐽 𝑓 𝑆0 𝑓 𝑤𝛼(𝑓)

Γ𝛼𝛼′ =
𝑡,𝑓
2𝑇Δ𝑓

𝛾𝐼𝐽 𝑓
2
𝑆0
2 𝑓

𝑃𝐼 𝑓 𝑃𝐽(𝑓)
𝑤𝛼(𝑓)𝑤𝛼′(𝑓)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.103529
https://iopscience.iop.org/article/10.1088/1475-7516/2016/04/024


Regimbau T., 2011

Astrophysical  SGWBs

https://iopscience.iop.org/article/10.1088/1674-4527/11/4/001/pdf


Astrophysical  SGWBs

• Astrophysical SGWB master formula(Phinney 2001, Regimbau 2011)

Ωgw 𝑓 =
𝑓

𝜌𝑐
න

Θ

𝖽𝜃 𝑝(𝜃)න
𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 𝑅(𝑧, Θ)

1 + 𝑧 𝐻0 𝐸 𝑧
ቤ

𝑑𝐸𝑔𝑤

𝑑𝑓
𝑓=𝑓𝑠 1+𝑧
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Source 
parameters Cosmic rate

GW energy spectrum in source frame

https://arxiv.org/abs/astro-ph/0108028
https://iopscience.iop.org/article/10.1088/1674-4527/11/4/001


Astrophysical  SGWBs

• Astrophysical SGWB master formula(Phinney 2001, Regimbau 2011)

Ωgw 𝑓 =
𝑓

𝜌𝑐
න

Θ

𝖽𝜃 𝑝(𝜃)න
𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 𝑅(𝑧, Θ)

1 + 𝑧 𝐻0 𝐸 𝑧
ቤ

𝑑𝐸𝑔𝑤

𝑑𝑓
𝑓=𝑓𝑠 1+𝑧

• Power-law approximation

Ωgw 𝑓 ≈ 𝜉
𝑓

𝑓ref

𝛼

ෑ

𝑖

𝜃𝑖
𝑐𝑖 ,

with

ξ ≡
Ωgw 𝑓ref

ςi θi
ci
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Source 
parameters Cosmic rate

GW energy spectrum in source frame

Ensemble 
properties

https://arxiv.org/abs/astro-ph/0108028
https://iopscience.iop.org/article/10.1088/1674-4527/11/4/001
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GWTC-3 Pop

Zhu et al. 2011

Regimbau-Mandic 2008

Astrophysical SGWBs of interest

20-100 Hz

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.011048
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59
https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018


Astrophysical SGWBs of interest

Population Ωgw 𝑓 Power law Parameter to constrain

𝑗 = BBH, BNS, BHNS Ωgw,𝑗 𝑓 ≈ 𝜉𝑗𝑓
2/3𝑅0,𝑗 ℳ𝑐

5/3

𝑗

𝛼 = 2/3 𝐾𝑗 ≡ 𝑅0,𝑗 ℳ𝑐
5/3

𝑗

CBC
(see Kevin Turbang’s talk) Ωgw,CBC 𝑓 ≈ 𝜉CBC 𝑓

Τ2 3

𝑗

𝑅0,𝑗 ℳ𝑐
5/3

𝑗 𝛼 = 2/3
𝐾CBC ≡

𝑗

𝐾𝑗

r-mode instability in young NSs
(Owen et al. 1998,

Zhu et al. 2011)

magnetars
(Regimbau-Mandic 2008,

Wu et al. 2013)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59
https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.042002


Astrophysical SGWBs of interest

Population Ωgw 𝑓 Power law Parameter to constrain
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𝑗
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5/3

𝑗 𝛼 = 2/3
𝐾CBC ≡

𝑗

𝐾𝑗

r-mode instability in young NSs
(Owen et al. 1998,

Zhu et al. 2011)

Ωgw,r−modes 𝑓 ≈ 𝜉r−modes 𝑓
2 𝐾 + 2 −1

𝛼 = 2 𝐾r−modes ≡ 𝐾 + 2 −1

magnetars
(Regimbau-Mandic 2008,

Wu et al. 2013)

Related to r-modes 
intensity α

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59
https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.042002


Astrophysical SGWBs of interest
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𝑗 𝛼 = 2/3
𝐾CBC ≡

𝑗

𝐾𝑗

r-mode instability in young NSs
(Owen et al. 1998,

Zhu et al. 2011)

Ωgw,r−modes 𝑓 ≈ 𝜉r−modes 𝑓
2 𝐾 + 2 −1

𝛼 = 2 𝐾r−modes ≡ 𝐾 + 2 −1

magnetars
(Regimbau-Mandic 2008,

Wu et al. 2013)

Ωgw,magnetars 𝑓 ≈ 𝜉magnetars 𝑓
4 휀2 𝐵−2

𝛼 = 4 𝐾magnetars ≡ 휀2 𝐵−2

Related to r-modes 
intensity α

ellipticity and (poloidal) 
magnetic field

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59
https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.042002


Validation: astrophysical multi-component injection study

• Injected (detectable) astrophysical SGWB from BNS, r-modes, and magnetars in O3 data

• Goal: recover both the amplitudes (similar and different orders of magnitude) and the 
population parameters (assuming SGWB being detectable)

22

Population BNS r-modes Magnetars

Power law 𝛼 = 2/3 𝛼 = 2 𝛼 = 4

Injected parameters
𝐾BNS ≃ 7.91 × 105 𝑀⊙

Τ5 3Gpc−3yr−1

(R0,BNS = 3.2 × 105Gpc−3yr−1)

𝐾r−modes = 103

𝐾 = −1.999

𝐾magnetars = 10−11

휀

𝐵
= 10−11

Resulting 𝛀𝜶 
(fref = 25 Hz)

ΩBNS ≃ 2.12 × 10−7 Ωr−modes ≃ 1.69 × 10−7 Ωmagnetars ≃ 1.79 × 10−8



Astrophysical multi-component injections: SGWB intensity

• Ω𝛼 well recovered only when the right α=2/3, 2, 4 
combination is considered

• Capability of disentangling SGWB with similar intensities 
or spanning order of magnitudes

23

20-100 Hz

Estimators

PE results (α=2/3, 2, 4): Red lines/boxes are the 
injections. Yellow error bars refer to the estimators. 



Astrophysical multi-component injections: astrophysical parameters

• Parameters well recovered for right α combination 

• Importance of the frequency range where power-law 
approximation is valid: best recovery for frequencies 
in 20-100 Hz band (in contrast to the 20-1726 Hz 
used in O3 analysis)

24

20-100 Hz

Astro PE results (α=2/3, 2, 4): Red lines/boxes are the injections. 

Astro PE results



Analysis with real data

• Considered SGWBs, 𝛼 = 0, Τ2 3 , 2, 3, 4

• Estimating Ω𝛼for all combinations

• Astrophysical implications for CBC (𝛼 = Τ2 3), r-mode (𝛼 = 2), and magnetar 
(𝛼 = 4) SGWBs 

• No further implications for 𝛼 = 0 and 3 (cosmological), but useful for comparison 
with LIGO-Virgo-KAGRA analysis (single-component analysis, 𝛼 = 0, Τ2 3 , 3) 



Analysis with real data (20-100 Hz): estimators

• Increasing uncertainty as the component number increases

• Fixed number of components: uncertainty decreases as the α-space distance increases 26

Astrophysical 
implications



27

• More stringent bounds as the number of components increase: expected, given that (noise) power split 
among multiple components (Callister et al. 2017)

Analysis with real data (20-100 Hz): upper limits

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.041058


28

• More stringent bounds as the number of components increase: expected, given that (noise) power split 
among multiple components (Callister et al. 2017)

Analysis with real data (20-100 Hz): upper limits
• Uniform priors: 

➢ 𝐾CBC ∈ 0, 107 𝑀⊙
5/3

Gpc−3yr−1

➢ 𝐾r−modes ∈ 10−13, 4/3
➢ 𝐾magnetars ∈ 0, 10−10 T−1

• Quite mild dependence on the alpha 
combinations: current data are not 
informative

• 𝐾CBC  → difficult to compare with 
inference from GWTC-3: limit of the 
current approach

• 𝐾r−modes  → approximately 𝐾 ≥
− 1.23, not very informative

• 𝐾magnetars  → possible implication 

for distortion parameter β (poloidal-
dominated magnetic field) and
parameter k (twisted-toroidal field):
not competitive with the existing
ones

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.041058


Summary
• Search for a Gaussian, stationary, unpolarised, isotropic SGWB, relaxing the hypothesis of a 

single component being present at a time 

• Method extended to astrophysical SGWBs and implications about ensemble properties

• Analysis performed over the data from the first three LIGO-Virgo-KAGRA observing runs for 
𝛼 = 0, Τ2 3 , 2, 3, 4, assuming a power law SGWB in the 20-100 Hz band of the analysis

•  No signal was found, 95% Bayesian upper limits on the Ω𝛼 were drawn

• Implications about astrophysical ensemble properties for CBC (𝛼 = Τ2 3), r-mode (𝛼 = 2), and 
magnetar (𝛼 = 4) SGWBs: limits not yet very informative or competitive with the existing ones

• Important take away from the injection study: this method will avoid bias and overestimating 
the components when getting closer to a detection (assuming power-law assumption holds)

• Possible improvements: need to go beyond the simple PL approximation to allow more 
flexibility (e.g., broader frequency range and remove degeneracy for CBC subpopulations)29



Thank you for your attention!
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BACKUP SLIDES
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2nd generation ground based detectors network
C

re
d

it
s:

 R
ea

d
ap

te
d

fr
o

m
 N

e
il 

C
o

rn
is

h
G

W
M

es
s2

0
2

1
 p

re
se

n
ta

ti
o

n

32

LIGO-Hanford, Washington, USA(2015)

LIGO-Livingston, Louisiana, USA (2015)

VIRGO, Cascina (PI), Italy (2017) KAGRA, Kamioka, Japan (2020)LIGO-India, Hingoli District, Maharashtra,India(202X)



Isotropic search: multi-component formalism (1)
• Model: Ωgw 𝑓 = σ{𝛼}Ω𝛼 𝑓 𝑤𝛼(𝑓) ,  𝑤𝛼 𝑓 ≡

𝑓

𝑓𝑟𝑒𝑓

𝛼

 

• Cross-correlation

ǁ𝑠𝐼
∗ 𝑡, 𝑓 ǁ𝑠𝐽 𝑡

′, 𝑓′ ≈ 𝛿 𝑓 − 𝑓′ 𝛿 𝑡 − 𝑡′
𝑇

2
𝑆0 𝛾𝐼𝐽 𝑓 Ωgw f + 𝑛𝐼

∗ 𝑡, 𝑓 𝑛𝐽 𝑡
′, 𝑓′ ,

which, at 𝑡 = 𝑡′and 𝑓 = 𝑓′, can be rewritten as

𝑪 = 𝑲 ⋅ 𝛀 + 𝐍  or 𝐶𝑡𝑓 = σ{𝛼}𝐾𝑡𝑓
𝛼 Ω𝛼 +𝑁𝑡𝑓,

with

𝑪 = 𝐶𝑡𝑓 ≡ ǁ𝑠𝐼
∗ 𝑡, 𝑓 ǁ𝑠𝐽 𝑡, 𝑓

𝛀 = Ω𝛼 ≡ Ω𝑔𝑤(𝑓𝑟𝑒𝑓, 𝛼)

𝑲 = 𝐾𝑡𝑓
𝛼 ≡

𝑇

2
𝑆0 𝑓 𝛾𝐼𝐽 𝑓 𝑤𝛼(𝑓)

𝐍 = 𝑁𝑡𝑓 = 𝑛𝐼
∗ 𝑡, 𝑓 𝑛𝐽 𝑡, 𝑓

• Noise covariance matrix:

𝓝 =𝒩𝑡𝑓𝑡′𝑓′ ≡ 𝛿 𝑓 − 𝑓′ 𝛿 𝑡 − 𝑡′
𝑇

2

2
𝑃𝐼 𝑓 𝑃𝐽 𝑓

33



• Maximum Likelihood estimator for 𝛀, and covariance matrix:

𝛀 = 𝚪−1 ⋅ 𝑿, 𝚺 = 𝚪−1,  𝝈𝟐 = diag(𝚺)

where 

𝑿 = 𝑲† ⋅ 𝓝−1 ⋅ 𝑪 , 𝚪 = 𝑲† ⋅ 𝓝−1 ⋅ 𝑲.

• (Broad-band) Dirty map and Fisher matrix:

𝑋𝛼 =
𝑡,𝑓

2

𝑇

ǁ𝑠𝐼
∗ 𝑡, 𝑓 ǁ𝑠𝐽(𝑡, 𝑓)

𝑃𝐼 𝑓 𝑃𝐽(𝑓)
𝛾𝐼𝐽 𝑓 𝑆0 𝑓 𝑤𝛼(𝑓)

Γ𝛼𝛼′ =
𝑡,𝑓

2

𝑇

𝛾𝐼𝐽 𝑓
2
𝑆0
2 𝑓

𝑃𝐼 𝑓 𝑃𝐽(𝑓)
𝑤𝛼(𝑓)𝑤𝛼′(𝑓)

Isotropic search: multi-component formalism (2)
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• Preconditioning may be necessary to avoid numerical errors when inverting 𝚪:

Γ𝛼𝛼′ → Γ′𝛼𝛼′ ≡
Γ
𝛼𝛼′

Γ𝛼 Γ𝛼′
,  𝑋𝛼 → 𝑋′𝛼 ≡

𝑋𝛼

Γ𝛼
,  Γ𝛼 ≡ diag 𝚪 𝛼

Ω𝛼 =
(Γ′)

𝛼𝛼′
−1 𝑋

𝛼′
′

Γ𝛼
,  Σ𝛼𝛼′ =

(Γ′)
𝛼𝛼′
−1

Γ𝛼 Γ𝛼′
,  𝜎𝛼

2 = diag 𝚺 𝛼

Isotropic search: multi-component formalism (3)

Example of coupling matrix for O1+O2+O3 dataset. 35



Astrophysical SGWBs of interest
• SGWB from CBCs (see Kevin Turbang’s talk for BBH):

Ωgw,𝑗 𝑓 ≈ 𝜉𝑗𝑓
2/3𝑅0,𝑗 ℳ𝑐

5/3

𝑗
≡ 𝜉𝑗𝑓

2/3𝐾𝑗 , 𝑗 = BBH, BNS, BHNS

Ωgw,CBC 𝑓 ≈ 𝜉CBC 𝑓
2/3 𝐾CBC, 𝐾CBC ≡

𝑗

𝐾𝑗

• r-mode instability in young NSs (Owen et al. 1998, Zhu et al. 2011)

Ωgw,r−modes 𝑓 ≈ 𝜉r−modes 𝑓
2 𝐾 + 2 −1 ≡ 𝜉r−modes 𝑓

2𝐾r−modes

• Magnetars (Regimbau-Mandic 2008, Wu et al. 2013)

Ωgw,magnetars 𝑓 ≈ 𝜉magnetars 𝑓
4 휀2 𝐵−2 ≡ 𝜉magnetars 𝑓

4𝐾magnetars
2

36

Related to r-modes intensity α

ellipticity and (poloidal) 
magnetic field

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59
https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.042002


Validation: astrophysical multi-component injection study
• Injected (detectable) astrophysical SGWB from BNS, r-modes, and magnetars in O3 data

• Astrophysical (unphysical) population parameters

𝐾BNS ≃ 7.91 × 105 𝑀⊙
5/3

Gpc−3yr−1(R0,BNS = 3.2 × 105Gpc−3yr−1)

𝐾r−modes = 103, 𝐾 = −1.999

𝐾magnetars = 10−11,
휀

𝐵
= 10−11

• Corresponding Ωref (fref = 25 Hz)

ΩBNS ≃ 2.12 × 10−7, Ωr−modes ≃ 1.69 × 10−7, Ωmagnetars ≃ 1.79 × 10−8

• Goal: recover both the amplitudes (similar and different orders of magnitude) and the 
population parameters (assuming SGWB being detectable) 37



Astrophysical multi-component injections: SGWB intensity

• Ω𝛼 well recovered only when the right α=2/3, 2, 4 combination is considered

• Capability of disentangling SGWB with similar intensities or spanning order of magnitudes
38

20-100 Hz

Estimators

PE results (α=2/3, 2, 4): Red lines/boxes are the 
injections. Yellow error bars refer to the estimators. 



Astrophysical multi-component injections: astrophysical parameters

• Parameters well recovered for right α combination 

• Importance of the frequency range where power-law approximation is valid: best recovery for 
frequencies in 20-100 Hz band (in contrast to the 20-1726 Hz used in O3 analysis) 39

20-100 Hz



Analysis with real data (20-100 Hz): estimators

• Increasing uncertainty as the component number increases

• Fixed number of components: uncertainty decreases as the α-space distance increases

40

Standard analysis

Astrophysical 
implications
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• More stringent bounds as the number of components increases: expected, given that (noise) power split among 
multiple components (Callister et al. 2017)

Analysis with real data (20-100 Hz): upper limits

• Uniform priors: 

➢ 𝐾CBC ∈ 0, 107 𝑀⊙
5/3

Gpc−3yr−1

➢ 𝐾r−modes ∈ 10−13, 4/3
➢ 𝐾magnetars ∈ 0, 10−10 T−1

• Quite mild dependence on the alpha combinations: current data are not informative
• 𝐾CBC → difficult to compare with inference from GWTC-3: limit of the current approach
• 𝐾r−modes → approximately 𝐾 ≥ −1.23, not very informative
• 𝐾magnetars  → possible implication for distortion parameter β (poloidal-dominated magnetic field) and

parameter k (twisted-toroidal field): not competitive with the existing ones

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.7.041058


Strong PL injections (20-1726 Hz)
{α=0, α=2/3, α=2, α=3, α=4}

42

PE results for multi-component analysis 
with 1σ error bars. Red lines/squares are 
the injections, yellow squares + error bar 
are multi-component estimators. Uniform 
priors on Ω𝛼 between 10−7 and 10−5.



Strong PL injections (20-1726 Hz) {α=0, α=2/3, α=2, α=3, α=4}: Ω𝛼

43



Strong PL injections (20-1726 Hz) {α=0, α=2/3, α=2, α=3, α=4}: PE

44



Analysis with real data (20-100 Hz): corner plots

45PE plot for Ω𝛼, with α=2/3, 2, 4 
PE plot for CBC, r-mode, and magnetar 

astrophysical implications



Beyond simple power law: SGWB from magnetars
• Astrophysical SGWB

Ω𝑔𝑤 𝑓 =
𝑓

𝜌𝑐
න
0

𝑧𝑠𝑢𝑝 𝜆 𝑅∗(𝑧)

1 + 𝑧 𝐻0 𝐸 𝑧
ቤ

𝑑𝐸𝑔𝑤

𝑑𝑓
𝑓=𝑓𝑠 1+𝑧

• Energy spectrum (magnetar with rotational period 𝑇𝑟𝑜𝑡, 
𝑑𝐸𝑔𝑤

𝑑𝑓
= 𝐾𝑓3 1 +

𝐾

𝜋2𝐼𝑧𝑧
𝑓2

−1

= ൝
𝐾𝑓3, GW emission negligible

𝜋2𝐼𝑧𝑧𝑓, purely GW spindown

𝐾 =
192𝜋4𝐺 𝐼𝑧𝑧

3

5𝑐2𝑅6
𝜀2

𝐵2 sin 𝛼

• Focus on the case where GW emission is negligible with respect to  
magnetic torque and on the (ensemble average of ) B and 휀 
parameters:

Ω𝑔𝑤
𝑚𝑎𝑔

𝑓 ∝ 휀2
1

𝐵2
𝑓4

46

𝑧𝑠𝑢𝑝 =

𝑧𝑚𝑎𝑥, 𝑓 <
𝑓𝑚𝑎𝑥

1 + 𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥

𝑓
− 1, otherwise

𝑓 ∈ 0,
2

𝑇𝑟𝑜𝑡

see Regimbau, Mandic 2008)

Star fraction into GW 
source of interest

Stellar formation rate

Magnetar moment of inertia

Ellipticity

Magnetic field

https://iopscience.iop.org/article/10.1088/0264-9381/25/18/184018


r-mode instability SGWB
• GW emission drives r-mode instability in young, rotating NSs, carrying 

away most the of the star angular momentum in ≃ 1yr timescale

• Simple description with parameters Ω (star angular velocity) and α (r-
mode-instability amplitude)→ Owen et al. 1998

• More recent studies (Sa-Tome 2006, Zhu et al. 2011) use the initial 
amount of differential rotation  𝐾 ∈ [−5/4, 1013] , related to the 
saturation amplitude 𝛼𝑠𝑎𝑡 ∝ 𝐾 + 2 −1/2

Ωgw, r−modes f ∝ 𝑓2 𝐾 + 2 −1

47

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.084020
https://doi.org/10.1103/PhysRevD.74.044011
https://iopscience.iop.org/article/10.1088/0004-637X/729/1/59


Phys. Rev. D 104, 022004 (2021)
48

LVK O3 search for isotropic SGWB: results

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.104.022004&v=4c36b91e
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