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General relativistic magnetohydrodynamics

New systems in 3G era (isolated neutron star, supernovae)
• Need simulations...
• ... but simulations are costly: cf. Arthur Offerman’s talk

What makes simulations so expensive?

Simulations numerically evolve

∂t (√γC) + ∂i
(√

γF i
)

= S

and depend on 2 sets of fluid variables (energy, momentum, density):

• C: conserved variables (evolved)
• P: primitive variables (computed from C)
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The C2P bottleneck

Going from C to P (C2P) is a major bottleneck [1, 2] :
• No analytic relation
• ∼ 40% of total simulation cost
• >300MB of external data (equation of state)

Goal: Optimize the C2P conversion with machine learning.

• We use the Gmunu solver [3–7] .

• “Optimize”? Criteria to evaluate numerical methods [2] :
1 Speed
2 Accuracy
3 Robustness
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Neural networks

• Neural networks can represent any function: f : X → Y : x 7→ y

• At each layer: z = φ
(
W T x

)
, φ = activation function

• Easy to implement in Gmunu (Fortran)
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Existing methods: root-finding algorithms

Current C2P methods find root x⋆ of master function f by iteratively
improving estimates xi (e.g., Newton-Raphson).

f (x)

x1 x2 x3 x⋆

x

1 Slow: evaluating f (x) is costly.
2 Accurate: accuracy tolerance as stopping criterion
3 Robust: well-designed master function (Kastaun et al. [8])
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Hybrid approach: idea

Neural network gives an initial guess, to be refined with the root-finding
algorithm.

f (x)

x1 x⋆

x

C ≈ x⋆
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Hybrid approach: proof of concept

Test case: magnetic field Bz of Alfvén wave:
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Small neural network: 2 hidden layers, each 20 hidden neurons.
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Hybrid approach: proof of concept

Faster! Simulation time:
• Standard: (23.48 ± 0.54) seconds
• Hybrid, ReLU activation function: (18.84 ± 0.19) seconds
• Speed-up of ∼ 25%
• Same accuracy and robustness!

Future work:
• Consider neutron star simulation
• Add non-trivial equation of state
• Train during simulation
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Conclusion

• Future detectors need templates obtained with expensive simulations:
the C2P is a major bottleneck to be tackled

• Existing methods using root-finding algorithms are guaranteed to be
accurate and robust

• Hybrid approaches can speed up simulations > 25% without
sacrificing accuracy or robustness

• Future work: simulate neutron star with non-trivial equation of state
(ongoing)
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Training data?

The primitive-to-conservative (P2C) transformation is analytic, e.g. in
GRHD:

D = ρW (v)
Si = ρhW (v)2vi

τ = ρhW (v)2 − p − D ,

with W (v) the Lorentz factor and h(p, ρ, ε) the enthalpy.

This is easy for low-dimensional, flat space-times with simple equations of
state.

Can also sample directly from simulations: easier for high-dimensional,
curved space-times with complicated equations of state in GRMHD.
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Näıve approach

1st (näıve) idea: Approximate f : C → P with a neural network.

C P

• Data generated with the analytic f −1 : P → C
• MLP with 504, 127 hidden neurons; sigmoid activation functions
• Trained with Adam & adaptable learning rate
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Results of näıve approach

1 Speed: ∼ 5× slower than existing methods
2 Accuracy: Squared difference: ∼ 10−3, vs. ∼ 10−8 for existing

methods
3 Robustness: Not guaranteed by machine learning (e.g., performance

outside training domain).
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