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General relativistic magnetohydrodynamics

New systems in 3G era (isolated neutron star, supernovae)
® Need simulations...

® .. but simulations are costly: cf. Arthur Offerman’s talk

What makes simulations so expensive?
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General relativistic magnetohydrodynamics

New systems in 3G era (isolated neutron star, supernovae)
® Need simulations...

® .. but simulations are costly: cf. Arthur Offerman’s talk
What makes simulations so expensive?

Simulations numerically evolve
0 (VAC) +0; (VAF') =8
and depend on 2 sets of fluid variables (energy, momentum, density):

® (: conserved variables (evolved)

e P: primitive variables (computed from C)
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The C2P bottleneck

Going from C to P (C2P) is a major bottleneck [1, 2]:
® No analytic relation
® ~ 40% of total simulation cost
® >300MB of external data (equation of state)
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The C2P bottleneck

Going from C to P (C2P) is a major bottleneck [1, 2]:
® No analytic relation
® ~ 40% of total simulation cost
e >300MB of external data (equation of state)

Goal: Optimize the C2P conversion with machine learning.

® We use the Gmunu solver [3-7].

e “Optimize"? Criteria to evaluate numerical methods [2]:
@ Speed
@® Accuracy
©® Robustness
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Neural networks

® Neural networks can represent any function: f: X — )Y :x+—y
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Neural networks

® Neural networks can represent any function: f: X — )Y :x+—y

® At each layer: z= ¢ (WTx>, (p = activation function
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Neural networks

® Neural networks can represent any function: f: X — )Y :x+—y
® At each layer: z=¢ (WTx>, (p = activation function

e Easy to implement in Gmunu (Fortran)
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Existing methods: root-finding algorithms

Current C2P methods find root x* of master function f by iteratively
improving estimates x; (e.g., Newton-Raphson).

f(x) A

y ©
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Existing methods: root-finding algorithms

Current C2P methods find root x* of master function f by iteratively
improving estimates x; (e.g., Newton-Raphson).

f(x) A

y ©

X1 X2 X3 X

® Slow: evaluating f(x) is costly.
® Accurate: accuracy tolerance as stopping criterion

©® Robust: well-designed master function (Kastaun et al. [g])
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Hybrid approach: idea

Neural network gives an initial guess, to be refined with the root-finding
algorithm.

X

Y
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Hybrid approach: proof of concept

Test case: magnetic field B, of Alfvén wave:
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Small neural network: 2 hidden layers, each 20 hidden neurons.
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Hybrid approach: proof of concept

Faster! Simulation time:
e Standard: (23.48 + 0.54) seconds

® Hybrid, ReLU activation function: (18.84 4 0.19) seconds
® Speed-up of ~ 25%

® Same accuracy and robustness!
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Hybrid approach: proof of concept

Faster! Simulation time:
e Standard: (23.48 + 0.54) seconds

Hybrid, ReLU activation function: (18.84 + 0.19) seconds
Speed-up of ~ 25%

® Same accuracy and robustness!

Future work:
e Consider neutron star simulation
® Add non-trivial equation of state

® Train during simulation
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Conclusion

® Future detectors need templates obtained with expensive simulations:
the C2P is a major bottleneck to be tackled

e Existing methods using root-finding algorithms are guaranteed to be
accurate and robust

e Hybrid approaches can speed up simulations > 25% without
sacrificing accuracy or robustness

® Future work: simulate neutron star with non-trivial equation of state
(ongoing)
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The primitive-to-conservative (P2C) transformation is analytic, e.g. in
GRHD:

D= pW(v)
Si = phW(v)?y;
T:phW(V)z_p_Dv

with W(v) the Lorentz factor and h(p, p, ) the enthalpy.

This is easy for low-dimensional, flat space-times with simple equations of
state.

Can also sample directly from simulations: easier for high-dimensional,
curved space-times with complicated equations of state in GRMHD.
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Naive approach

15t (naive) idea: Approximate f : C — P with a neural network.
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* Data generated with the analytic f~1: P = C
e MLP with 504, 127 hidden neurons; sigmoid activation functions

® Trained with Adam & adaptable learning rate
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Results of naive approach

@ Speed: ~ 5x slower than existing methods

@® Accuracy: Squared difference: ~ 1073, vs. ~ 1078 for existing
methods

© Robustness: Not guaranteed by machine learning (e.g., performance
outside training domain).
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