Overview of data analysis and observational science

Anna Puecher

Belgian-Dutch Gravitational Wave meeting 23 October 2023

What we have

What we have

Total: 90 events

-Special events

- neutron star black hole
- unequal masses (GW190412, GW190814)
- very massive event (GW190521)
- heavy binary neutron star (GW190425)
- Object with 2.6 M_{\odot} (GW190814)

Population properties

MASSES

LVK, Phys.Rev.X13 (2023) 1, 011048

Pair instability supernovae: 50-120 M_{\odot} (GW190521, GW200220) Black holes of non-stellar origin?

SPIN

Binaries formation channels:

- <u>Isolated binary evolution</u>: aligned spins
- <u>Dynamical interaction</u>: precession, misaligned spins

Spin properties ⇐⇒ Formation channels

Investigate and model different mechanisms

Testing general relativity

- Study effects of specific alternative theories
- Comparing data with general relativity predictions
- Parametrized deviations from the phase evolution
- Parametrized deviations from amplitude of higher order modes
- Test the nature of compact objects: echoes (no horizon)
- Propagation of gravitational waves
- Inspiral-merger-ringdown consistency

 $\bullet \bullet \bullet$

Phys.Rev.D 108 (2023) 6, 064018

$$\Phi(v) = \left(\frac{v}{c}\right)^{-5} \left[\varphi_{0\rm PN} + \varphi_{0.5\rm PN} \left(\frac{v}{c}\right) + \varphi_{1\rm PN} \left(\frac{v}{c}\right)^2 + \dots\right]$$

No violations of general relativity found until now!

Most recent LVK results: arXiv:2112.06861

Sub-solar mass black holes

Black holes with mass $\leq 1 \text{ M}_{\odot}$?

- Primordial black holes (explain dark matter)
- Dark matter

O3b results: arXiv:2212.01477

Can have any mass, including smaller than one solar mass

Supernovae

gravitational collapse of the stellar core

Black

Hole

5-50 Mo

Never lighter than a solar mass

Measure Hubble constant

Expansion of the Universe \implies Hubble constant

We need: distance and redshift Different methods: **Hubble tension**

Credit: Wendy Freedman

Measure Hubble constant

Gravitational waves:

Astrophys.J. 949 (2023) 2, 76

- we measure the distance of the source
- we can find the redshift

 \rightarrow electromagnetic counterpart for neutron stars \rightarrow comparison with catalogs

Future:

- more detections
- more detectors (better localization)
- improved catalogs
- study of systematics

Lensing

Lensing applications: - fundamental physics - cosmology

Complete O3 analysis: arXiv:2304.08393

•••

No evidence for lensing found, but expected in the next years

Neutron stars

Neutron stars: supranuclear-dense matter

Equation of state:

relation between pressure and density **1** parameters of the neutron stars

Gen. Rel.Grav. 53, 27 (2021)

- measure the parameters
- combine with nuclear information [Nature 606, 276 (2022)]
- study the postmerger
- multimessenger astrophysics

Develop tools - waveform models

Develop tools - waveform models

Essential for:

- parameter estimation
- matched filtering (template banks)

Accurate models needed: include precession, higher-order modes, eccentricity...

Develop tools - new methods

• SIMULATION-BASED INFERENCE: alternative to traditional sampling methods [talks: Weniger, Wermersson, Bhardwaj]

• *MACHINE LEARNING:* parameter estimation, tests of general relativity, models, glitches classifications...

Class.Quant.Grav. 35 (2018) 15, 155017

Other sources

- Early evolution of the Universe
- Superposition of many independent sources _____> Pulsar Timing Array

Looking at the future

01

O2

<u>03a</u>

ОЗЬ

Einstein Telescope	e
and	
Cosmic Explorer	
-	

LISA

an.				O3b	/
SUC					$\left[\right] $
cti					乙/
fete			O3a		
၀ 55 . မွ					
atıv					
Int					
lun		02			
フ <u>11</u> マ	01				

	# of detections	$\mathrm{SNR}_{\mathrm{net}}$	# with SNR _{net} > 250	$\# \text{ with } SNR_{net} > 100$
BBH				
Low rate	53756	$81.1^{+94.2}_{-57.3}$	3069(5%)	20605 (35%)
Median rate	85725	$81.3^{+93.9}_{-57.5}$	4972 (5%)	33148 (39%)
High rate	137225	$81.5^{+94.2}_{-57.4}$	7860 (6%)	53419 (39%)
BNS				
Low rate	98898	$19.2^{+22.1}_{-4.9}$	17 (0.017%)	298 (0.30%)
Median rate	396793	$19.1^{+22.0}_{-4.8}$	73 (0.018%)	1257~(0.32%)
High rate	1004525	$19.1^{+22.1}_{-4.8}$	196 (0.020%)	3255~(0.32%)

Phys.Rev.D 104 (2021) 4, 044003

*O*4

Looking at the future

More events, louder, more time in band

- Overlapping signals
- Systematics (ex: waveform models)
- Computational issues:
 automation,
 develop methods to reduce the cost

Mon.Not.Roy.Astron.Soc. 523 (2023) 2, 1699-1710

