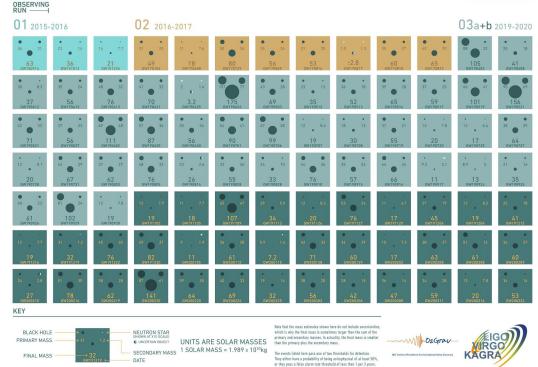
Bayesian inference of binary black holes with inspiral-merger-ringdown waveforms using two eccentric parameters

gr-qc : 2309.15528

Antoni Ramos-Buades, Alessandra Buonanno, Jonathan Gair

Dutch-Belgian GW Meeting October 23, 2023



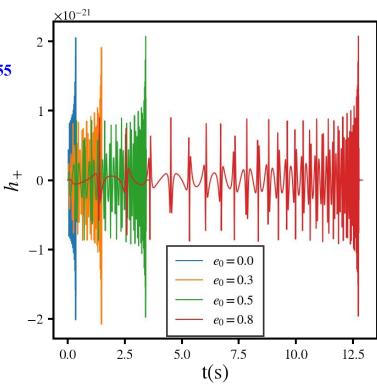
Gravitational-wave observations

- Third-observing (O3) run of the LIGO, Virgo and KAGRA (LVK) detectors: ~ 90 binary black holes (BBHs), 2 binary neutron star (BNS) and 2 neutron-star black-hole (NSBH) binaries [Abbot+2021,Nitz+2021, Olsen+2021].
- Analysis performed with multipolar waveform models for **quasi-circular** precessing-spin BBHs.
- Most detections consistent with quasi-circular binaries.
- In O4 and future detectors, more likely to detect eccentric binaries.

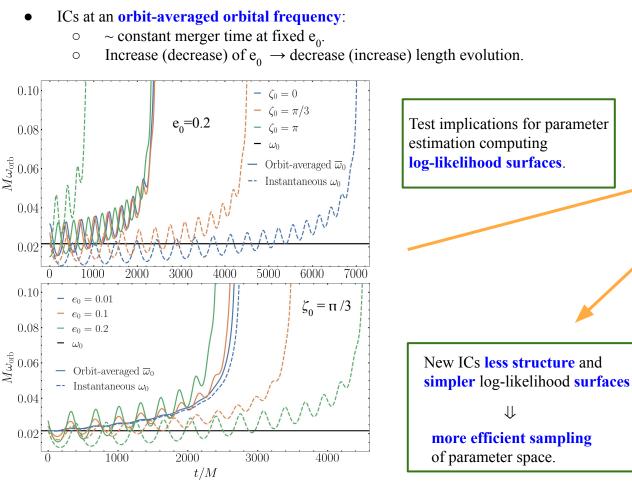
GRAVITATIONAL WAVE MERGER DETECTIONS

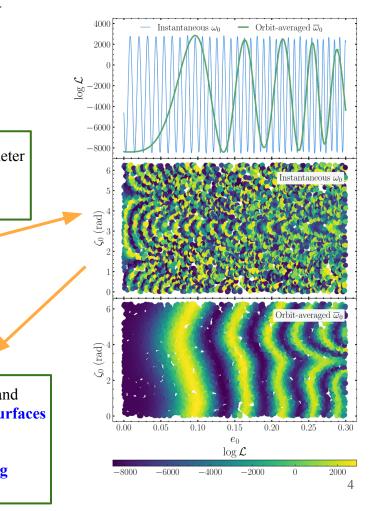
→ SINCE 2015

A waveform model for eccentric binary black holes


• Extension of accurate quasi-circular multipolar aligned-spin SEOBNRv4HM [Bohe+2017, Cotesta+2018] model to eccentric binaries (SEOBNRv4EHM) [Ramos-Buades+2021].

• It includes eccentricity effects to the gravitational modes (22, 21, 33, 44, 55 modes) up to 2PN order, including spin-orbit and spin-spin effects [Khalil+2021].


• Two-parameter initial conditions : initial eccentricity, $0 \le e_0 \le 1$, and relativistic anomaly, $\zeta_0 \le [0,2\pi]$, defined in the Keplerian parametrization:


$$r = \frac{p}{1 + e_0 \cos \zeta_0}, \quad p: \text{ semi-latus rectum}$$

• Same merger-ringdown model → system has circularized at merger. as SEOBNRv4HM

Initial conditions at an orbit-averaged frequency

Numerical relativity injections

- Assess accuracy of **SEOBNRv4E_opt** with injections of eccentric numerical relativity (NR) waveforms.
- To compare NR and EOB eccentricities → common definition of eccentricity based on the waveform with correct Newtonian limit [Ramos-Buades+2022]:

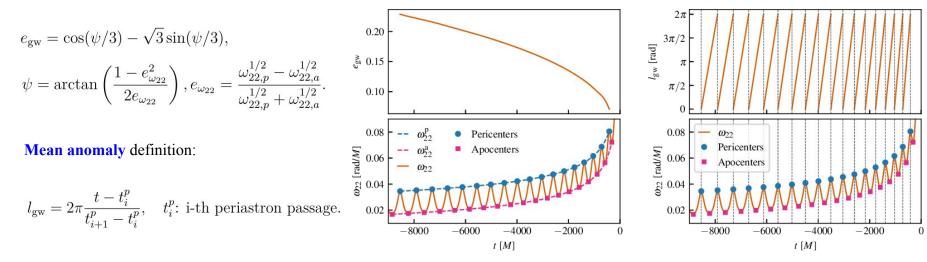
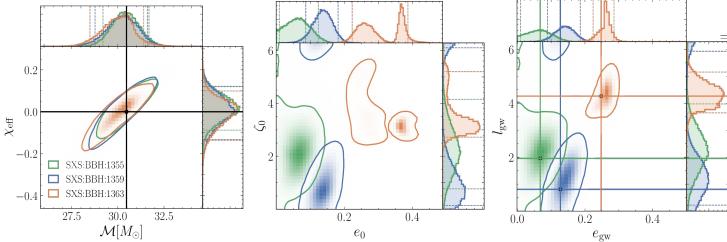


Figure from Shaikh+2023


• Use highly efficient implementation in gw_eccentricity Python package [Shaikh+2023] on samples at post-processing.

Numerical relativity injections

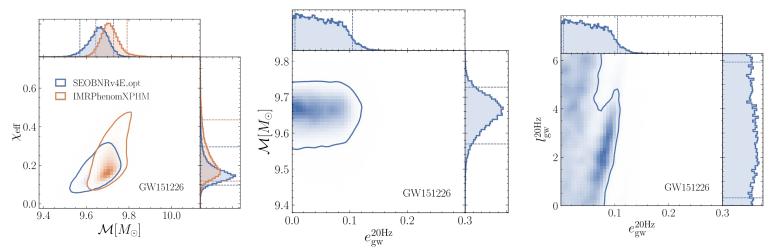
• Inject 3 equal-mass non-spinning NR waveforms with $e_0 = (0.07, 0.13, 0.25)$ from the SXS catalog into zero noise:

q = 1, $\chi_{1,2} = 0$, $M = 70M_{\odot}$, $\iota = 0$, SNR = 20 at 20Hz.

- NR waveforms with modes $l \le 8$ modes, and recover with SEOBNRv4E_opt.
- Quasi-circular parameters accurately recovered (bias in the d_{L} due to different mode content).
- GW eccentricity and mean anomaly are accurately measured.

Parameter	Injected value	SXS:1355	SXS:1359	SXS:1363
M/M_{\odot}	70.0	$70.87^{+2.47}_{-2.27}$	70.41+2.45	$69.81^{+2.32}_{-2.72}$
${\cal M}/M_{\odot}$	30.47	$30.41^{+0.98}_{-0.95}$	$30.26^{+1.04}_{-1.14}$	$30.06^{+0.98}_{-1.21}$
1/q	1.0	$0.79\substack{+0.17 \\ -0.19}$	$0.8^{+0.16}_{-0.19}$	$0.81\substack{+0.15 \\ -0.17}$
$\chi_{ m eff}$	0.0	$0.02\substack{+0.08\\-0.08}$	$0.01\substack{+0.09 \\ -0.1}$	$-0.0\substack{+0.08\\-0.1}$
e_0	-	$0.06\substack{+0.05\\-0.05}$	$0.14\substack{+0.03 \\ -0.04}$	$0.29\substack{+0.09 \\ -0.05}$
ζ_0	-	$2.23^{+1.37}_{-1.16}$	$1.01^{+4.67}_{-0.75}$	$3.28^{+1.6}_{-0.45}$
$\theta_{\rm JN}$	0.0	$0.62^{+0.48}_{-0.38}$	$0.61\substack{+0.48\\-0.37}$	$0.61\substack{+0.47 \\ -0.37}$
d_L	2307	1831^{+373}_{-560}	1818^{+374}_{-556}	1859^{+378}_{-571}
$\phi_{\rm ref}$	0.0	$3.15\substack{+2.5\\-2.52}$	$3.14^{+2.51}_{-2.5}$	$3.16^{+2.52}_{-2.52}$
$ ho_{\mathrm{mf}}^{\mathrm{N}}$	20.0	$19.07^{+0.09}_{-0.14}$	$19.05^{+0.09}_{-0.15}$	$19.02\substack{+0.17\\-0.15}$
e_{gw}	Injected	0.07	0.13	0.25
. 5	Measured	$0.06\substack{+0.05\\-0.05}$	$0.14\substack{+0.04 \\ -0.04}$	$0.26\substack{+0.02\\-0.03}$
l_{gw}	Injected	1.96	0.81	4.27
e	Measured	$2.25^{+1.19}_{-1.11}$	$1.33\substack{+1.7 \\ -0.93}$	$4.32^{+0.63}_{-0.54}$

GW events: GW151226

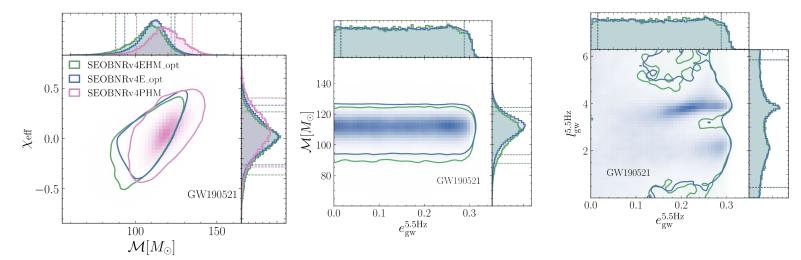

• Analyze GW151226 with SEOBNRv4E_opt (low total mass event).

Comparison against **IMRPhenomXPHM** from GWTC-2.1.

• Differences between posteriors due to **spin-precession** and **distinct baselines of the approximants**.

	Event	Waveform	M/M_{\odot}	${\cal M}/M_{\odot}$	1/q	$\chi_{ m eff}$	$e_{\rm gw}$	$l_{\rm gw}$	$\theta_{\rm JN}$	d_L	$\log \mathcal{BF}$
		SEOBNRv4E_opt	$22.61^{+1.97}_{-0.43}$	$9.66\substack{+0.05 \\ -0.07}$	$0.7^{+0.23}_{-0.27}$	$0.15\substack{+0.09 \\ -0.05}$	$0.05\substack{+0.05 \\ -0.04}$	$3.02^{+2.57}_{-2.35}$	$1.93^{+0.87}_{-1.55}$	483^{+153}_{-170}	$33.2^{+0.1}_{-0.1}$
(<i>f</i> _{st}	$(f_{\text{start}} = 20\text{Hz})$	IMRPhenomXPHM	$23.71^{+6.13}_{-1.36}$	$9.71\substack{+0.06 \\ -0.05}$	$0.52\substack{+0.35 \\ -0.29}$	$0.2^{+0.17}_{-0.07}$	-	-	$0.87^{+1.94}_{-0.57}$	471^{+124}_{-154}	$47.6^{+0.1}_{-0.1}$

• No clear evidence of eccentricity, consistent with [O'Shea+2021] using TEOBResumS-Dali.



GW events: GW190521

- Analyze **GW190521** with **SEOBNRv4EHM_opt** (f_{min} =5.5Hz).
- Comparison against **SEOBNRv4PHM** from GWTC-2.1.
- Differences between posteriors due to **spin-precession**.

Event	Waveform	M/M_{\odot}	\mathcal{M}/M_{\odot}	1/q	$\chi_{ m eff}$	$e_{\rm gw}$	$l_{\rm gw}$	$\theta_{\rm JN}$	d_L	$\log \mathcal{BF}$
GW190521 (f _{start} = 5.5Hz)	SEOBNRv4E_opt	$259.92^{+21.63}_{-20.06}$	$111.15^{+9.88}_{-12.69}$	$0.74_{-0.25}^{+0.2}$	$0.02\substack{+0.23 \\ -0.21}$	$0.15\substack{+0.12 \\ -0.12}$	$3.14^{+2.26}_{-2.28}$	$1.27^{+1.43}_{-0.86}$	3924^{+1434}_{-1460}	$77.8^{+0.1}_{-0.1}$
	SEOBNRv4EHM_opt	$253.97^{+21.48}_{-24.94}$	$108.4^{+10.56}_{-15.27}$	$0.72^{+0.22}_{-0.24}$	$-0.01\substack{+0.21\\-0.26}$	$0.15\substack{+0.12 \\ -0.12}$	$3.16^{+2.25}_{-2.3}$	$0.88^{+1.89}_{-0.55}$	4172^{+1262}_{-1286}	$78.6^{+0.1}_{-0.1}$
	SEOBNRv4PHM	$279.54^{+36.74}_{-28.65}$	$118.13^{+12.94}_{-13.15}$	$0.74_{-0.31}^{+0.2}$	$0.06\substack{+0.26 \\ -0.27}$	-	-	$1.39^{+1.28}_{-0.93}$	3964^{+1557}_{-1474}	-

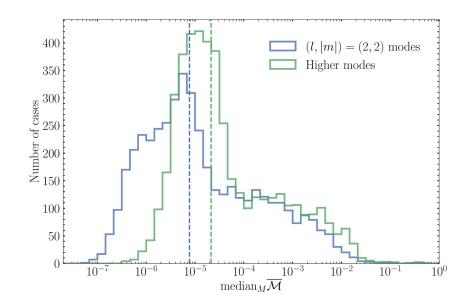
• Uninformative GW mean anomaly and no clear measurement of GW eccentricity.

Conclusions

- We present new initial conditions at an **orbit-average frequency** for **SEOBNRv4EHM**.
- We introduce **SEOBNRv4EHM_opt** a **faster** version of SEOBNRv4EHM, which can be used for parameter estimation.
- We perform parameter estimation with **two eccentric parameters**, and show the biases of neglecting the radial phase parameter.
- **SEOBNRv4EHM_opt accurate against eccentric NR injections**. Use a waveform-based definition of eccentricity [Ramos-Buades+2022], and apply **gw_eccentricity**[Shaik+2023] package at post-processing (*pip install gw_eccentricity*).
- GW150914, GW151226 and GW190521 show no clear evidence of eccentricity with SEOBNRv4EHM_opt and uniform $e_0 \in [0,0.3]$ priors.

Ongoing work:

- We are analyzing **all O3 events** in the GWTC-3 catalog using **DINGO** [Gupte+2023].
- New model **SEOBNRv5EHM ongoing** [Gamboa+2023], which will be deployed for **LVK review**.

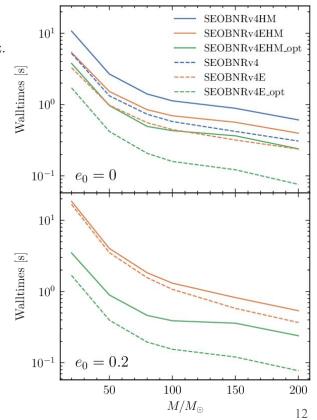

Extra slides

Fast eccentric waveforms

- SEOBNRv4EHM relies on SEOBNRv4HM \rightarrow not computational efficient enough for parameter estimation.
- Here, we present a faster version **SEOBNRv4EHM_opt**. Main modifications :
 - Usage of optimized dynamics and Hamiltonian from SEOBNRv4_opt [Devine+2016,Knowles+2018].
 - **Reduced** absolute and relative **ODE** tolerances from $(10^{-9}, 10^{-10})$ to $(10^{-8}, 10^{-8})$. Similarly to [O'Shea+2021] for TEOBResumS-Dali.
- Assess accuracy against SEOBNRv4EHM by computing the unfaithfulness for 4500 points in the following parameter space:

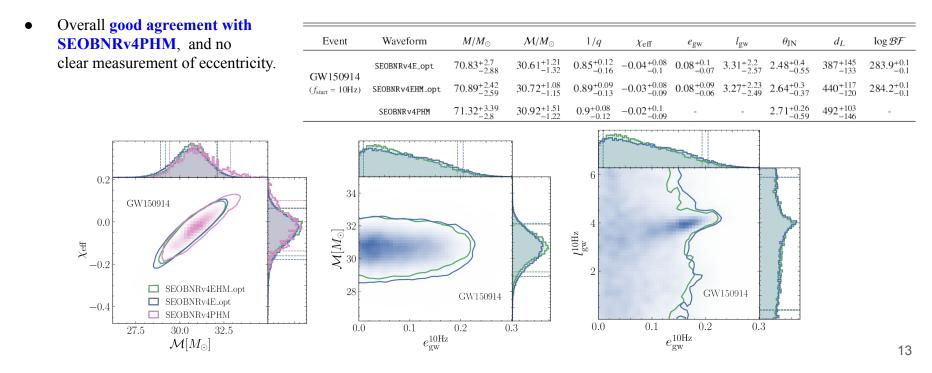
 $q \in [1, 50], \quad \chi_{1,2} \in [-0.9.0.9], \quad e_0 \in [0, 0.5], \quad \zeta_0 \in [0.2\pi], \quad \iota = \pi/3 \quad \text{for} \quad M\omega_0 = 0.023$

- Median mismatch over total mass range $M_T \in [20, 300] M_{\odot}$ shows:
 - For (2,|2|)-mode models the median is 7.7 x 10⁻⁶.
 - For higher-mode models the median is 2.1×10^{-6} .
- Overall **remarkable agreement** with **small tail** of large mismatches for corners of parameter spaces ($e_0 > 0.3$ and high spins $\chi_{1,2} > 0.8$). Region out of the scope of this study.


Fast eccentric waveforms

• Assess speed improvement of SEOBNRv4EHM_opt by timing waveform evaluation for two configurations:

q = 3, $\chi_1 = -0.5$, $\chi_2 = 0.3$, $\zeta_0 = 1$, $M \in [20, 200] M_{\odot}$, $e_0 = [0, 0.2]$ at $f_{\text{start}} = 10$ Hz.


• Walltimes include all modes $l \le 4$ and sampling rate 8192 Hz.

- Approximately a factor 2-3 improvement in speed for the configurations considered here.
- Sampling rate considered here quite high, typical PE applications use lower ones → waveform evaluation times of O(100)ms.

GW events: GW150914

- Analyze GW150914 with **SEOBNRv4EHM_opt** (l≤4 modes).
- Comparison against **SEOBNRv4PHM** from GWTC-2.1.

