Back-Action Evading Measurement in Gravitational Wave Detectors to Overcome Standard Quantum Limit, Using Negative Radiation Pressure

Souvik Agasti, Abhishek Shukla, Milos Nesladek

Quantum Science and Technology Group, University of Hasselt

Noise and Sensitivity in GW Detection

The noise we deal with-

- Seismic noise
- Thermal noise
- Detector noise (electronic noise)
- Quantum noise

- Sensitivity increment for optical high-precision measurements
- squeezed mode generation at output modes $S^{\theta}_{\omega} = 1/2 \langle \{X^{\theta}_{\omega}, X^{\theta}_{-\omega}\} \rangle$ – with $X^{\theta}_{\omega} = 1/\sqrt{2} \left(a^{\dagger}_{-\omega}e^{i\theta} + a_{\omega}e^{-i\theta}\right)$
- Avoiding quantum optomechanical back action

$$S^{h}(\omega) = h_{SQL}^{2} \frac{H_{L}^{T} T S^{in} T^{\dagger} H_{L}}{|H_{L}^{T} . t|}$$
⁽²⁾

Rotational matrix
$$H_L = \begin{bmatrix} \cos \phi_L \\ \sin \phi_L \end{bmatrix} S^{in} = \frac{1}{2} \langle in| \begin{bmatrix} \{X, X^{\dagger}\} & \{Y, X^{\dagger}\} \\ \{X, Y^{\dagger}\} & \{Y, Y^{\dagger}\} \end{bmatrix} |in\rangle$$

Squeezed Mode in Different Output Quadrature

¹Living Reviews in Relativity volume 22, 2 (2019)

Squeezed Vacuum Injection

$$S^{h}(\omega) = \frac{h_{SQL}^{2}}{2K_{MI}(\omega)} \left[e^{-2r} (\sin\theta - \cos\theta K_{MI}(\omega))^{2} + e^{2r} (\sin\theta K_{MI}(\omega) + \cos\theta)^{2} \right]$$

- Frequency dependent squeezing
- EPR entanglement based conditional squeezing

³Living Reviews in Relativity volume 22, 2 (2019)

Spin-optomechanical Hybrid Model

- Heterodyne detection ⁴
- The measurement is performed by two entangled beams of light, probing the GWD and an auxiliary atomic spin ensemble.

Squeezing in Hybrid System

$$\chi_{M} = \chi_{S} \to \omega_{m} = \omega_{s}, \ \gamma_{m} = \gamma_{s}$$
$$\Gamma_{M} = \Gamma_{S}$$

$$S^{h}(\omega) = h_{SQL}^{2} \frac{H_{L}^{T} T S^{in} T^{\dagger} H_{L}}{|H_{L}^{T} . t|} \rightarrow \frac{h_{SQL}^{2}}{2 \cosh 2r} \left[\frac{1}{K(\omega)} + K(\omega) \right]$$

Souvik Agasti, Abhishek Shukla, Milos Nesla

10[.]

Negative pressure optomechanics

$$Y_{a,b}^{(out)} = e^{2i\beta_{a,b}}Y_{a,b}^{(in)} + K_{ab}X_{b,a}^{(in)}$$
$$-K_{a,b}X_{a,b}^{(in)} + i\sqrt{2K_{a,b}}\frac{F^{S} \pm F_{a,b}^{th}}{F^{sql}} \qquad (3)$$

⁵arXiv:2301.09974

5

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Two-cavity optomechanics

⁶arXiv:2301.09974

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�(

Two-cavity optomechanics

⁷arXiv:2301.09974

Souvik Agasti, Abhishek Shukla, Milos Nesla

12/18

Practical Implementation - GW Interferometer

⁸arXiv:2301.09974

ロト (個) (注) (注) (注) つんの

Souvik Agasti, Abhishek Shukla, Milos Nesla

13 / 18

9

⁹arXiv:2301.09974

GW vs Optomechanical Interaction

Souvik Agasti, Abhishek Shukla, Milos Nesla

15 / 18

Compared to the schemes proposed before, our scheme appears to be much more efficient for-

- not demanding any auxiliary spin system, therefore there is no need to design a negative mass spin system with a lower Larmor frequency and bandwidth
- it has the ability to suppress the QBA noise more than the spin-optomechanical hybrid scheme, along with the same rate of the suppression of shot noise.
- it suppresses the thermal noise simultaneously with good efficiency.

11

¹¹arXiv:2301.09974

Looking for opportunity to execute the experiment

æ

イロト イヨト イヨト イヨト

Thank you

æ

イロト イヨト イヨト イヨト