First observational constraints on the GW-AGN connection through spatial correlation analysis

The most luminous AGN do not produce the majority of the detected stellar-mass Black Hole Binary mergers in the local Universe

The most luminous AGN do not produce the majority of the detected stellar-mass black hole binary mergers in the local Universe

Niccolò Veronesi, ${ }^{1 \star}$ Elena Maria Rossi, ${ }^{1}$ Sjoert van Velzen, ${ }^{1}$
${ }^{1}$ Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

Accepted 2023 October 12. Received 2023 September 15; in original form 2023 June 19

Abstract

Despite the increasing number of Gravitational Wave (GW) detections, the astrophysical origin of Binary Black Hole (BBH) mergers remains elusive. A promising formation channel for BBHs is inside accretion discs around supermassive black holes, that power Active Galactic Nuclei (AGN). In this paper, we test for the first time the spatial correlation between observed GW events and AGN. To this end, we assemble all sky catalogues with 1,412 (242) AGN with a bolometric luminosity greater than $10^{45.5} \mathrm{erg} \mathrm{s}^{-1}\left(10^{46} \mathrm{erg} \mathrm{s}^{-1}\right)$ with spectroscopic redshift of $z \leq 0.3$ from the Milliquas catalogue, version 7.7b. These AGN are cross-matched with localisation volumes of BBH mergers observed in the same redshift range by the LIGO and Virgo interferometers during their first three observing runs. We find that the fraction of the detected mergers originated in AGN brighter than $10^{45.5} \mathrm{erg} \mathrm{s}^{-1}\left(10^{46} \mathrm{erg} \mathrm{s}^{-1}\right)$ cannot be higher than $0.49(0.17)$ at a 95 per cent credibility level. Our upper limits imply a limited BBH merger production efficiency of the brightest AGN, while most or all GW events may still come from lower luminosity ones. Alternatively, the AGN formation path for merging stellar-mass BBHs may be actually overall subdominant in the local Universe. To our knowledge, ours are the first observational constraints on the fractional contribution of the AGN channel to the observed BBH mergers.

How can we learn where BBHs merge?

Detection of ElectroMagnetic transient counterparts

How can we learn where BBHs merge?

Detection of ElectroMagnetic transient counterparts

Graham+20, Graham+23, Ashton+21

Predictions on binary parameters and comparison to observations

How can we learn where BBHs merge?

Detection of
ElectroMagnetic transient counterparts

Graham+20, Graham+23, Ashton+21

Predictions on binary parameters and comparison to observations

Investigation of spatial correlation with potential hosts

How can we learn where BBHs merge?

Detection of
ElectroMagnetic transient counterparts

Graham+20, Graham+23, Ashton+21

Predictions on binary parameters and comparison to observations

Investigation of spatial correlation with potential hosts

Fraction of detected BBH mergers that happened in an AGN

Why focusing on AGN?

McKernan+11, McKernan+12,

Why focusing on AGN?

- Dense dynamical environments High chance of binary formation

Why focusing on AGN?

- Dense dynamical environments High chance of binary formation
- Deep gravitational potential Possibility of retain kicked remnants

Why focusing on AGN?

- Dense dynamical environments High chance of binary formation
- Deep gravitational potential

Possibility of retain kicked remnants

- Migration (traps)

Gathering many compact objects in the same region

If only it was this easy...

GW localisation volume- : AGN position

If only it was this easy...

GW localisation volume

- : AGN position

If only it was this easy...

GW localisation volume

- : AGN position

If only it was this easy...

GW localisation volume

- : AGN position

If only it was this easy...

GW localisation volume

- : AGN position

If only it was this easy...

GW localisation volume

- : AGN position

The real picture

- $L_{\text {bol }} \geq 10^{46} \mathrm{erg} \mathrm{s}^{-1}$

242 AGN
AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \leq 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \leq 0.3$ with 90% credibility

- More AGN Bad

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \leq 0.3$ with 90% credibility

- More AGN

Bad

- More detected BBH mergers Good

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \leq 0.3$ with 90% credibility

- More AGN

Bad

- More detected BBH mergers Good
- Large localisation volumes Bad

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

The real picture

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \leq 0.3$ with 90% credibility

- More AGN

Bad

- More detected BBH mergers Good
- Large localisation volumes Bad
- Incomplete AGN catalogues Bad

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

Our method

$$
\begin{array}{r}
\mathcal{L}\left(f_{\mathrm{AGN}}\right)=\prod_{i=1}^{N_{\mathrm{GW}}}\left[c \cdot 0.9 \cdot f_{\mathrm{AGN}} \cdot \mathcal{S}_{i}+\left(1-c \cdot 0.90 \cdot f_{\mathrm{AGN}}\right) \mathcal{B}_{i}\right] \\
\mathcal{S}_{i}=\frac{\sum_{j=1}^{N_{\mathrm{V} 90_{i}}} p_{j}}{n_{\mathrm{AGN}} \mathrm{~V} 90_{i}} \quad \mathcal{B}_{i}=\frac{0.9}{\mathrm{~V} 90_{i}}
\end{array}
$$

Our method

Multiple detected BBH mergers
$\mathcal{L}\left(f_{\mathrm{AGN}}\right)=\prod_{i=1}^{N_{\mathrm{GW}}}\left[c \cdot 0.9 \cdot f_{\mathrm{AGN}} \cdot \mathcal{S}_{i}+\left(1-c \cdot 0.90 \cdot f_{\mathrm{AGN}}\right) \mathcal{B}_{i}\right]$

$$
\mathcal{S}_{i}=\frac{\sum_{j=1}^{N_{\mathrm{V} 90_{i}}} p_{j}}{n_{\mathrm{AGN}} \mathrm{~V} 90_{i}}
$$

$$
\mathcal{B}_{i}=\frac{0.9}{\mathrm{~V} 90_{i}}
$$

Our method

Multiple detected BBH mergers
$\mathcal{L}\left(f_{\mathrm{AGN}}\right)=\prod_{i=1}^{N_{\mathrm{GW}}}\left[c \cdot 0.9 \cdot f_{\mathrm{AGN}} \cdot \mathcal{S}_{i}+\left(1-c \cdot 0.90 \cdot f_{\mathrm{AGN}}\right) \mathcal{B}_{i}\right]$

$$
\mathcal{B}_{i}=\frac{0.9}{\mathrm{~V} 90_{i}}
$$

Multiple AGN

Our method

Multiple detected BBH mergers

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Number of AGN within } \\
\text { localisation volumes }
\end{array} & \mathcal{S}_{i}=\frac{\sum_{j=1}^{N \mathrm{~V} 90_{i}} p_{j}}{n_{\mathrm{AGN}} \mathrm{~V} 90_{i}} \\
\hline
\end{array}
$$

Multiple AGN

Our method

Multiple detected BBH mergers

Multiple AGN

Our method

Multiple AGN
Size of localisation volumes

Our method

Our method

Likelihood maximization $\left(\mathscr{L}\left(f_{\text {AGN }}\right)\right.$)

Our method

Likelihood maximization $\left(\mathscr{L}\left(f_{\text {AGN }}\right)\right.$)
Application to observed data

Results

90\% CL rejection 95\% CL rejection

Results

Figure 10. The dichotomous range of AGN migration traps in $\{M, M\}$ space. The large orange points are discs that have traps, while the small black points are discs that do not. The dashed curves are lines of constant $L_{\text {AGN }}$ from $10^{44} \mathrm{erg} \mathrm{s}^{-1}$ to $10^{46} \mathrm{erg} \mathrm{s}^{-1}$ in jumps of 0.5 dex. The thick grey line is the approximate bifurcation boundary between discs that have traps and discs that do not. Left panel: $\alpha=0.01$. Right panel: $\alpha=0.1$. The highest luminosity AGN lack migration traps.

Future perspectives

Future perspectives

Future perspectives

Go deeper in redshift

Apply to more complete AGN catalogues

Future perspectives

Future perspectives

Go deeper in redshift

Apply to more complete AGN catalogues

Thank you for your attention!

90\% CL rejection
95\% CL rejection
veronesi@strw.leidenuniv.nl

| Name | Citation for Name | unWISE ID
 [deg] | R.A.
 [deg] | Dec. | z | Citation for z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Event ID	$\begin{gathered} m_{1} \\ \mathbf{M}_{\odot} \end{gathered}$	$\begin{gathered} m_{2} \\ \mathbf{M}_{\odot} \end{gathered}$	χ eff	z	SNR	$\begin{gathered} \mathrm{V90} \\ {\left[\mathrm{Mpc}^{3}\right]} \end{gathered}$	$N_{\text {V90,CAT450 }}$	$N_{\text {V90,CAT455 }}$	$N_{\text {V90,CAT460 }}$
GW150914_095045	34.6 +4.4	$30.0_{-4.9}^{+2.9}$	$-0.04_{-0.14}^{+0.12}$	$0.10_{-0.03}^{+0.03}$	$26.0_{-0.2}^{+0.1}$	$3.39 \cdot 10^{6}$	3	0	0
GW151226_033853	$14.2_{-3.6}^{+11.1}$	$7.5_{-2.8}^{+2.4}$	$0.20_{-0.08}^{+0.23}$	$0.10_{-0.04}^{+0.03}$	$12.7{ }_{-0.4}^{+0.2}$	$1.32 \cdot 10^{7}$	10	1	0
GW170104_101158	$28.7_{-4.2}^{+6.6}$	$20.8{ }_{-4.7}^{+4.1}$	$-0.04_{-0.19}^{+0.15}$	$0.22_{-0.09}^{+0.07}$	$13.8_{-0.3}^{+0.4}$	$1.42 \cdot 10^{8}$	196	30	6
GW170608_020116	$10.6_{-1.4}^{+4.2}$	$7.8_{-1.9}^{+1.2}$	$0.05_{-0.05}^{+0.13}$	$0.07_{-0.03}^{+0.03}$	$15.3_{-0.3}^{+0.2}$	$2.98 \cdot 10^{6}$	3	0	0
GW170809_082821	$34.1_{-5.3}^{+8.0}$	$24.2_{-5.3}^{+4.8}$	$0.07_{-0.17}^{+0.17}$	$0.21_{-0.07}^{+0.05}$	$12.8_{-0.3}^{+0.3}$	$4.21 \cdot 10^{7}$	35	6	1
GW170814_103043	$30.9{ }_{-3.3}^{+5.4}$	$24.9{ }_{-4}^{+3.0}$	$0.08_{-0.12}^{+0.13}$	$0.13_{-0.05}^{+0.03}$	$17.7_{-0.3}^{+0.3}$	$2.96 \cdot 10^{6}$	2	0	0
GW170818_022509	$34.8{ }_{-4.5}^{+6.3}$	$27.6_{-5}^{+4.1}$	$-0.06_{-0.22}^{+0.19}$	$0.21_{-0.07}^{+0.07}$	$12.0_{-0.4}^{+0.3}$	$6.04 \cdot 10^{6}$	3	1	0
GW190412_053044	$27.7_{-6.0}^{+6.0}$	$9.0_{-1.4}^{+2.0}$	$0.21_{-0.13}^{+0.12}$	$0.15_{-0.04}^{+0.04}$	$19.8{ }_{-0.3}^{+0.4}$	$9.16 \cdot 10^{6}$	20	3	0
GW190425_081805	$2.1_{-0.4}^{+0.5}$	$1.3_{-0.2}^{+0.4}$	$0.07_{-0.05}^{+0.07}$	$0.03_{-0.01}^{+0.02}$	$12.4{ }_{-0.4}^{+0.4}$	$7.78 \cdot 10^{6}$	9	1	0
GW190630_185205	$35.1{ }_{-5}^{+6.5}$	$24.0_{-5}^{+5.5}$	$0.10_{-0.13}^{+0.14}$	$0.18_{-0.07}^{+0.09}$	$16.4_{-0.3}^{+0.4}$	$1.23 \cdot 10^{8}$	148	33	4
GW190707_093326	$12.1_{-2.0}^{+2.7}$	$7.9_{-1.3}^{+1.6}$	$-0.04_{-0.09}^{+0.10}$	$0.17_{-0.08}^{+0.06}$	$13.1{ }_{-0.4}^{+0.2}$	$9.20 \cdot 10^{7}$	17	3	1
GW190708_232457	$19.8{ }_{-4.3}^{+4.3}$	$11.6{ }_{-2}^{+3.1}$	$0.05_{-0.10}^{+0.10}$	$0.19_{-0.07}^{+0.06}$	$13.4{ }_{-0.3}^{+0.4}$	$1.02 \cdot 10^{9}$	1560	305	43
GW190720_000836	$14.2_{-3.3}^{+5.6}$	$7.5_{-1.8}^{+2.2}$	$0.19_{-0.11}^{+0.14}$	$0.16_{-0.11}^{+0.11}$	$10.9{ }_{-0.8}^{+0.3}$	$4.24 \cdot 10^{7}$	20	7	1
GW190725_174728	$11.8_{-3.0}^{+10.1}$	$6.3_{-2.5}^{+2.1}$	$-0.04_{-0.16}^{+0.36}$	$0.20_{-0.08}^{+0.09}$	$9.1_{-0.7}^{+0.4}$	$3.81 \cdot 10^{8}$	106	44	11
GW190728_064510	$12.5_{-2.3}^{+6.9}$	$8.0_{-2.6}^{+2.5}$	$0.13_{-0}^{+0.19}{ }^{-0.19}$	$0.18_{-0}^{+0.05}$	$13.1_{-0.4}^{+0.3}$	$3.88 \cdot 10^{7}$	17	4	0
GW190814_211039	$23.3_{-14}^{+1.4}$	$2.6{ }_{-0.1}^{+0.6}$	$0.00_{-0.07}^{+0.07}$	$0.05_{-0.01}^{+0.01}$	$25.3^{+0.1}$	$3.55 \cdot 10^{4}$	0	0	0
GW190917_033853	$9.7_{-3.9}^{+3.4}$	$2.1_{-0.4}^{+1.1}$	$-0.08_{-0.43}^{+0.21}$	$0.15_{-0.06}^{+0.05}$	$8.3_{-08}^{+0 . .^{2}}$	$1.05 \cdot 10^{8}$	60	22	3
GW190924_021846	$8.8{ }^{+4.3}$	$5.1_{-1.2}^{+1.4}$	$0.03{ }_{-0}^{+0.20}$	$0.11_{-0.04}^{+0.04}$	$12.0_{-0.4}^{+0.3}$	$1.27 \cdot 10^{7}$	13	1	0
GW190925_232845	$20.8_{-2.9}^{+6.5}$	$15.5_{-3.6}^{+2.5}$	$0.09_{-0.15}^{+0.16}$	$0.19_{-0.07}^{+0.08}$	$9.7_{-0.3}^{+0.3}$	$2.86 \cdot 10^{8}$	401	94	12
GW190930_133541	$14.2{ }^{+8.0}$	$6.9+2.4$	$0.19_{-0.16}^{+0.22}$	$0.16_{-0.06}^{+0.06}$	$9.7{ }_{-0.3}^{+0.3}$	$1.32 \cdot 10^{8}$	63	13	2
GW191103_022549	$11.8{ }_{-2.2}^{+6.2}$	$7.9_{-2.4}^{+1.7}$	$0.21_{-0.10}^{+0.16}$	$0.20_{-0.09}^{+0.09}$	$8.9{ }^{+0.0 .5}$	$3.16 \cdot 10^{8}$	255	62	8
GW191105_143512	$10.7_{-1.6}^{+3.2}$	$7.7_{-1.9}^{+1.4}$	$-0.02_{-0.09}^{+0.13}$	$0.23_{-0.09}^{+0.07}$	$9.7_{-0.5}^{+0.3}$	$1.53 \cdot 10^{8}$	164	36	3
GW191129_134029	$10.7_{-2.1}^{+4.6}$	$6.7_{-1.5}^{-1.9}$	$0^{0.06}{ }_{-0}^{+0.169}$	$0.16_{-0.06}^{+0.05}$	$13.1{ }_{-0.3}^{+0.2}$	$5.92 \cdot 10^{7}$	101	20	2
GW191204_171526	$11.9{ }_{-1.8}^{+3.3}$	$8.2_{-1.6}^{+1.4}$	$0.16_{-0.05}^{+0.08}$	$0.13_{-0.05}^{+0.04}$	$17.5_{-0.2}^{+0.2}$	$1.24 \cdot 10^{7}$	12	1	0
GW191216_213338	$12.1{ }_{-2.6}^{+4.8}$	$7.7_{-1.9}^{+1.6}$	$0.11_{-0.13}^{+0.13}$	$0.07_{-0.03}^{+0.02}$	$18.6_{-0.2}^{+0.2}$	$3.66 \cdot 10^{6}$	2	2	0
GW200115_042309	$5.9+2.0$	$1.44_{-0.29}^{+0.85}$	$-0.15_{-0.42}^{+0.24}$	$0.06_{-0.02}^{+0.09}$	$11.3^{+0.3}$	$3.79 \cdot 10^{6}$	3	2	0
GW200129_065458	$34.5{ }_{-3.9}^{+9.9}$	$28.9{ }_{-9}^{+3.4}$	$0.11_{-0.16}^{+0.11}$	$0.18_{-0.07}^{+0.05}$	$26.8{ }_{-0.2}^{+0.2}$	$7.06 \cdot 10^{6}$	7	0	0
GW200202_153413	$10.1{ }_{-1.4}^{+3.2}$	$7.3_{-1.1}^{+1.1}$	$0.04_{-0.136}^{+0.13}$	$0.09_{-0.03}^{+0.03}$	$10.8_{-0.4}^{+0.2}$	$2.32 \cdot 10^{6}$	2	0	0
GW200311_115853	$34.2_{-3.4}^{+6.4}$	$27.7_{-5.1}^{+4.1}$	$-0.02_{-0.16}^{+0.16}$	$0.23{ }_{-0}^{+0.05}$	$17.8_{-0.2}^{+0.4}$	$5.94 \cdot 10^{6}$	7	2	0
GW200316_215756	$13.1_{-2.9}^{+10.2}$	$7.8_{-2.9}^{+1.9}$	$0.13_{-0.10}^{+0.27}$	0.22 ${ }_{-0.08}^{+0.08}$	$10.3_{-0.7}^{+0.4}$	$9.22 \cdot 10^{7}$	12	5	0

The Effect of Thermal Torques on AGN Disc Migration Traps and Gravitational Wave Populations

Evgeni Grishin , ${ }^{1,2 \star}$ Shmuel Gilbaum ${ }^{3}$, and Nicholas C. Stone ${ }^{3}$
${ }^{1}$ School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
${ }^{2}$ The ARC Centre of Excellence for Gravitational Wave Discovery - OzGrav, Clayton, VIC 3800, Australia
${ }^{3}$ Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel

18 July 2023

ABSTRACT

Accretion discs in active galactic nuclei (AGN) foster black hole (BH) formation, growth, and mergers. Stellar mass BHs migrate inwards under the influence of hydrodynamical torques unless they encounter a region where the torque flips sign. At these migration traps, BHs accumulate and merge via dynamical or gas-assisted interactions, producing high-frequency LIGO/Virgo/KAGRA (LVK) gravitational wave (GW) sources and potentially cutting off the supply of extreme mass ratio inspirals that would otherwise make low-frequency, LISA-band GWs. In this paper, we study the interplay between different types of migration torques, focusing especially on the "thermal torques" generated by the thermal response of the AGN to embedded stellar-mass BHs that accrete through their own mini-discs. In contrast to previous work, we find that Type I torques cannot produce migration traps on their own, but thermal torques often do, particularly in low-mass AGN. The migration traps produced by thermal torques exist at much larger distances ($\sim 10^{3-5}$ gravitational radii) than do previously identified Type I traps, carrying implications for GW populations at multiple frequencies. Finally, we identify a bifurcation of AGN discs into two regimes: migration traps exist below a critical AGN luminosity, and do not at higher luminosities. This critical luminosity is fit as $\log _{10} L_{\mathrm{AGN}}^{c}=45-0.32 \log _{10}(\alpha / 0.01)$ where α is the Shakura-Sunyaev viscosity parameter, a range compatible with recent claims that LVK GWs are not preferentially associated with high-luminosity AGN.

