

Universiteit Leiden Leiden Observatory

Elena Maria Rossi

Sjoert van Velzen

First observational constraints on the GW-AGN connection through spatial correlation analysis

The most luminous AGN do not produce the majority of the detected stellar-mass Black Hole Binary mergers in the local Universe

Niccolò Veronesi - Belgian-Dutch Gravitational Wave Meeting 2023 - 23/10/2023

The most luminous AGN do not produce the majority of the detected stellar-mass black hole binary mergers in the local Universe

Niccolò Veronesi,¹* Elena Maria Rossi,¹ Sjoert van Velzen,¹ ¹ Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

Accepted 2023 October 12. Received 2023 September 15; in original form 2023 June 19

ABSTRACT

channel to the observed BBH mergers.

Despite the increasing number of Gravitational Wave (GW) detections, the astrophysical origin of Binary Black Hole (BBH) mergers remains elusive. A promising formation channel for BBHs is inside accretion discs around supermassive black holes, that power Active Galactic Nuclei (AGN). In this paper, we test for the first time the spatial correlation between observed GW events and AGN. To this end, we assemble all sky catalogues with 1,412 (242) AGN with a bolometric luminosity greater than $10^{45.5}$ erg s⁻¹ (10^{46} erg s⁻¹) with spectroscopic redshift of $z \le 0.3$ from the Milliquas catalogue, version 7.7b. These AGN are cross-matched with localisation volumes of BBH mergers observed in the same redshift range by the LIGO and Virgo interferometers during their first three observing runs. We find that the fraction of the detected mergers originated in AGN brighter than $10^{45.5}$ erg s⁻¹ (10^{46} erg s⁻¹) cannot be higher than 0.49 (0.17) at a 95 per cent credibility level. Our upper limits imply a limited BBH merger production efficiency of the brightest AGN, while most or all GW events may still come from lower luminosity ones. Alternatively, the AGN formation path for merging stellar-mass BBHs may be actually overall subdominant in the local Universe. To our knowledge, ours are the first observational constraints on the fractional contribution of the AGN

Detection of ElectroMagnetic transient counterparts

Graham+20, Graham+23, Ashton+21

Detection of ElectroMagnetic transient counterparts

Predictions on binary parameters and comparison to observations

Graham+20, Graham+23, Ashton+21

McKernan+20, Romero-Shaw+21, Gayathri+21, Karathanasis+22, ...

Detection of ElectroMagnetic transient counterparts

Predictions on binary parameters and comparison to observations

Graham+20, Graham+23, Ashton+21

McKernan+20, Romero-Shaw+21, Gayathri+21, Karathanasis+22, ...

Investigation of spatial correlation with potential hosts

Bartos+17, Corley+19, NV+22, NV+23

Detection of ElectroMagnetic transient counterparts

Predictions on binary parameters and comparison to observations

Graham+20, Graham+23, Ashton+21

McKernan+20, Romero-Shaw+21, Gayathri+21, Karathanasis+22, ...

Investigation of spatial correlation with potential hosts

Bartos+17, Corley+19, NV+22, NV+23

Fraction of detected BBH mergers that happened in an AGN

• Dense dynamical environments High chance of binary formation

- Dense dynamical environments High chance of binary formation
- Deep gravitational potential Possibility of retain kicked remnants

- Dense dynamical environments High chance of binary formation
- Deep gravitational potential Possibility of retain kicked remnants
- Migration (traps) Gathering many compact objects in the same region

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

UGC 8058 Nearest known Quasar

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \le 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \le 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

 More AGN Bad

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \le 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

- More AGN Bad
- More detected BBH mergers Good

GW skymaps for the **30 BBHs** from O1, O2, and O3 with $z \le 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

- More AGN Bad
- More detected BBH mergers Good
- Large localisation volumes Bad

GW skymaps for the 30 BBHs from O1, O2, and O3 with $z \le 0.3$ with 90% credibility

AGN from unWISE (Schlafly+19) with spectroscopic redshift from Milliquas v7.7b (Flesch21)

- More AGN Bad
- More detected BBH mergers Good
- Large localisation volumes Bad
- Incomplete AGN catalogues Bad

Our method

					_
0.50	0.60	0.70	0.80	0.90	
<i>f</i> _{AGN}					

23 Grishintraps.

Apply to more complete AGN catalogues

Go deeper in redshift

Apply to more complete AGN catalogues

Go deeper in redshift

Apply to more complete AGN catalogues

Apply to O4

Go deeper in redshift

Apply to more complete AGN catalogues

Apply to O5

Apply to O4

Go deeper in redshift

Apply to more complete AGN catalogues

Apply to O5

Apply to O4

Go deeper in redshift

Apply to more complete AGN catalogues

3rd generation detectors

Apply to O5

Apply to O4

Go deeper in redshift

Apply to more complete AGN catalogues

3rd generation detectors

Go deeper in redshift

Apply to more complete AGN catalogues

Thank you for your attention!

Name	Citation for Name	unWISE ID [deg]	R.A. [deg]	Dec.	z	Citation for z	W1 mag	$L_{\rm W1}$ [erg s ⁻¹]
UVQSJ000000.15-200427.7	Monroe et al. (2016)	0000m197o0005716	0.00065	-20.07433	0.291	Monroe et al. (2016)	13.65	$2.72\cdot 10^{44}$
SDSS J000005.49+310527.6	Ahumada et al. (2020)	0000p318o0001234	0.02290	31.09102	0.286	Ahumada et al. (2020)	14.20	$1.58 \cdot 10^{44}$
PHL 2525	Lamontagne et al. (2000)	0000m122o0001902	0.10172	-12.76328	0.200	Lamontagne et al. (2000)	11.04	$1.29 \cdot 10^{45}$
2MASX J00004028-0541012	Masci et al. (2010)	0000m061o0015237	0.16774	-5.68361	0.094	Masci et al. (2010)	11.33	$1.90\cdot 10^{44}$
RXS J00009+1723	Wei et al. (1999)	0000p166o0024250	0.23319	17.39413	0.215	Wei et al. (1999)	12.93	$2.64 \cdot 10^{44}$
SDSS J000102.18-102326.9	Lyke et al. (2020)	0000m107o0014745	0.25911	-10.39078	0.294	Lyke et al. (2020)	14.75	$1.01\cdot 10^{44}$
RX J00013+0728	Tesch & Engels (2000)	0000p075o0010333	0.32534	7.47432	0.270	Tesch & Engels (2000)	14.06	$1.57\cdot 10^{44}$
PGC 929358	Paturel et al. (2003)	0000m137o0004668	0.33219	-14.07310	0.087	Mauch & Sadler (2007)	11.65	$1.21\cdot10^{44}$
PGC 1698547	Paturel et al. (2003)	0000p242o0009501	0.38474	24.04179	0.104	Ahumada et al. (2020)	11.72	$1.65 \cdot 10^{44}$
RX J00015+0529	Tesch & Engels (2000)	0000p060o0003070	0.38896	5.48926	0.250	Ahumada et al. (2020)	12.67	$4.71\cdot 10^{44}$

V+23

Event ID	$m_1 \ { m M}_{\odot}$	$m_2 \ { m M}_{\odot}$	$\chi_{ m eff}$	z	SNR	V90 [Mpc ³]	N _{V90,CAT450}	N _{V90,CAT455}	N _{V90,CAT460}
GW150914_095045	$34.6^{+4.4}_{-2.6}$	$30.0^{+2.9}_{-4.6}$	$-0.04^{+0.12}_{-0.14}$	$0.10^{+0.03}_{-0.03}$	$26.0^{+0.1}_{-0.2}$	$3.39\cdot 10^6$	3	0	0
GW151226_033853	$14.2^{+11.1}_{-3.6}$	$7.5^{+2.4}_{-2.8}$	$0.20^{+0.23}_{-0.08}$	$0.10^{+0.03}_{-0.04}$	$12.7^{+0.3}_{-0.4}$	$1.32\cdot 10^7$	10	1	0
GW170104_101158	$28.7^{+6.6}_{-4.2}$	$20.8_{-4.7}^{+4.1}$	$-0.04^{+0.15}_{-0.19}$	$0.22_{-0.09}^{+0.07}$	$13.8_{-0.3}^{+0.2}$	$1.42 \cdot 10^8$	196	30	6
GW170608_020116	$10.6^{+4.0}_{-1.4}$	$7.8^{+1.2}_{-1.9}$	$0.05^{+0.13}_{-0.05}$	$0.07_{-0.03}^{+0.03}$	$15.3^{+0.2}_{-0.3}$	$2.98 \cdot 10^6$	3	0	0
GW170809_082821	$34.1^{+8.0}_{-5.3}$	$24.2^{+4.8}_{-5.3}$	$0.07_{-0.17}^{+0.17}$	$0.21_{-0.07}^{+0.05}$	$12.8^{+0.2}_{-0.3}$	$4.21 \cdot 10^{7}$	35	6	1
GW170814_103043	$30.9^{+5.4}_{-3.3}$	$24.9^{+3.0}_{-4.0}$	$0.08^{+0.13}_{-0.12}$	$0.13_{-0.05}^{+0.03}$	$17.7^{+0.2}_{-0.3}$	$2.96 \cdot 10^{6}$	2	0	0
GW170818_022509	$34.8_{-4.2}^{+6.5}$	$27.6^{+4.1}_{-5.1}$	$-0.06^{+0.19}_{-0.22}$	$0.21_{-0.07}^{+0.07}$	$12.0^{+0.3}_{-0.4}$	$6.04 \cdot 10^{6}$	3	1	0
GW190412_053044	$27.7^{+6.0}_{-6.0}$	$9.0^{+2.0}_{-1.4}$	$0.21^{+0.12}_{-0.13}$	$0.15_{-0.04}^{+0.04}$	$19.8^{+0.2}_{-0.3}$	$9.16 \cdot 10^{6}$	20	3	0
GW190425_081805	$2.1^{+0.5}_{-0.4}$	$1.3_{-0.2}^{+0.3}$	$0.07_{-0.05}^{+0.07}$	$0.03_{-0.01}^{+0.02}$	$12.4^{+0.4}_{-0.4}$	$7.78 \cdot 10^6$	9	1	0
GW190630_185205	$35.1^{+6.5}_{-5.5}$	$24.0^{+5.5}_{-5.2}$	$0.10^{+0.14}_{-0.13}$	$0.18^{+0.09}_{-0.07}$	$16.4^{+0.2}_{-0.3}$	$1.23 \cdot 10^8$	148	33	4
GW190707_093326	$12.1^{+2.6}_{-2.0}$	$7.9^{+1.6}_{-1.3}$	$-0.04_{-0.09}^{+0.10}$	$0.17_{-0.08}^{+0.06}$	$13.1^{+0.2}_{-0.4}$	$9.20 \cdot 10^{7}$	17	3	1
GW190708_232457	$19.8_{-4.3}^{+4.3}$	$11.6^{+3.1}_{-2.0}$	$0.05^{+0.10}_{-0.10}$	$0.19_{-0.07}^{+0.06}$	$13.4_{-0.3}^{+0.2}$	$1.02 \cdot 10^9$	1560	305	43
GW190720_000836	$14.2^{+5.6}_{-3.3}$	$7.5^{+2.2}_{-1.8}$	$0.19_{-0.11}^{+0.14}$	$0.16^{+0.11}_{-0.05}$	$10.9^{+0.3}_{-0.8}$	$4.24 \cdot 10^{7}$	20	7	1
GW190725_174728	$11.8^{+10.1}_{-3.0}$	$6.3^{+2.1}_{-2.5}$	$-0.04_{-0.16}^{+0.36}$	$0.20^{+0.09}_{-0.08}$	$9.1^{+0.4}_{-0.7}$	$3.81 \cdot 10^{8}$	106	44	11
GW190728_064510	$12.5^{+6.9}_{-2.3}$	$8.0^{+1.7}_{-2.6}$	$0.13^{+0.19}_{-0.07}$	$0.18_{-0.07}^{+0.05}$	$13.1_{-0.4}^{+0.3}$	$3.88 \cdot 10^{7}$	17	4	0
GW190814_211039	$23.3^{+1.4}_{-1.4}$	$2.6^{+0.1}_{-0.1}$	$0.00^{+0.07}_{-0.07}$	$0.05_{-0.01}^{+0.01}$	$25.3^{+0.1}_{-0.2}$	$3.55 \cdot 10^4$	0	0	0
GW190917_033853	$9.7^{+3.4}_{-3.9}$	$2.1^{+1.1}_{-0.4}$	$-0.08^{+0.21}_{-0.43}$	$0.15_{-0.06}^{+0.05}$	$8.3^{+0.5}_{-0.8}$	$1.05 \cdot 10^8$	60	22	3
GW190924_021846	$8.8^{+4.3}_{-1.8}$	$5.1^{+1.2}_{-1.5}$	$0.03^{+0.20}_{-0.08}$	$0.11_{-0.04}^{+0.04}$	$12.0^{+0.3}_{-0.4}$	$1.27 \cdot 10^7$	13	1	0
GW190925_232845	$20.8^{+6.5}_{-2.9}$	$15.5^{+2.5}_{-3.6}$	$0.09^{+0.16}_{-0.15}$	$0.19_{-0.07}^{+0.08}$	$9.7^{+0.3}_{-0.6}$	$2.86 \cdot 10^8$	401	94	12
GW190930_133541	$14.2^{+8.0}_{-4.0}$	$6.9^{+2.4}_{-2.1}$	$0.19_{-0.16}^{+0.22}$	$0.16^{+0.06}_{-0.06}$	$9.7^{+0.3}_{-0.5}$	$1.32 \cdot 10^8$	63	13	2
GW191103_022549	$11.8^{+6.2}_{-2.2}$	$7.9^{+1.7}_{-2.4}$	$0.21^{+0.16}_{-0.10}$	$0.20^{+0.09}_{-0.09}$	$8.9^{+0.3}_{-0.5}$	$3.16 \cdot 10^8$	255	62	8
GW191105_143512	$10.7^{+3.7}_{-1.6}$	$7.7^{+1.4}_{-1.9}$	$-0.02^{+0.13}_{-0.09}$	$0.23_{-0.09}^{+0.07}$	$9.7^{+0.3}_{-0.5}$	$1.53 \cdot 10^8$	164	36	3
GW191129_134029	$10.7^{+4.1}_{-2.1}$	$6.7^{+1.5}_{-1.7}$	$0.06^{+0.16}_{-0.08}$	$0.16^{+0.05}_{-0.06}$	$13.1_{-0.3}^{+0.2}$	$5.92 \cdot 10^{7}$	101	20	2
GW191204_171526	$11.9^{+\overline{3.3}}_{-1.8}$	$8.2^{+1.4}_{-1.6}$	$0.16^{+0.08}_{-0.05}$	$0.13_{-0.05}^{+0.04}$	$17.5_{-0.2}^{+0.2}$	$1.24 \cdot 10^{7}$	12	1	0
GW191216_213338	$12.1_{-2.3}^{+4.6}$	$7.7^{+1.6}_{-1.9}$	$0.11_{-0.06}^{+0.13}$	$0.07_{-0.03}^{+0.02}$	$18.6^{+0.2}_{-0.2}$	$3.66 \cdot 10^{6}$	2	2	0
GW200115_042309	$5.9^{+2.0}_{-2.5}$	$1.44_{-0.29}^{+0.85}$	$-0.15_{-0.42}^{+0.24}$	$0.06^{+0.09}_{-0.02}$	$11.3^{+0.3}_{-0.5}$	$3.79 \cdot 10^{6}$	3	2	0
GW200129_065458	$34.5_{-3.2}^{+9.9}$	$28.9^{+3.4}_{-9.3}$	$0.11^{+0.11}_{-0.16}$	$0.18_{-0.07}^{+0.05}$	$26.8_{-0.2}^{+0.2}$	$7.06 \cdot 10^{6}$	7	0	0
GW200202_153413	$10.1^{+3.5}_{-1.4}$	$7.3^{+1.1}_{-1.7}$	$0.04_{-0.66}^{+0.13}$	$0.09^{+0.03}_{-0.03}$	$10.8^{+0.2}_{-0.4}$	$2.32\cdot 10^6$	2	0	0
GW200311_115853	$34.2^{+6.4}_{-3.8}$	$27.7^{+4.1}_{-5.9}$	$-0.02_{-0.20}^{+0.16}$	$0.23_{-0.07}^{+0.05}$	$17.8^{+0.2}_{-0.2}$	$5.94 \cdot 10^6$	7	2	0
GW200316_215756	$13.1_{-2.9}^{+10.2}$	$7.8^{+1.9}_{-2.9}$	$0.13_{-0.10}^{+0.27}$	$0.22_{-0.08}^{+0.08}$	$10.3_{-0.7}^{+0.4}$	$9.22 \cdot 10^7$	12	5	0

The Effect of Thermal Torques on AGN Disc Migration Traps and Gravitational Wave Populations

Evgeni Grishin ,^{1,2*} Shmuel Gilbaum³, and Nicholas C. Stone³

¹School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
²The ARC Centre of Excellence for Gravitational Wave Discovery – OzGrav, Clayton, VIC 3800, Australia
³Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel

18 July 2023

ABSTRACT

Accretion discs in active galactic nuclei (AGN) foster black hole (BH) formation, growth, and mergers. Stellar mass BHs migrate inwards under the influence of hydrodynamical torques unless they encounter a region where the torque flips sign. At these migration traps, BHs accumulate and merge via dynamical or gas-assisted interactions, producing high-frequency LIGO/Virgo/KAGRA (LVK) gravitational wave (GW) sources and potentially cutting off the supply of extreme mass ratio inspirals that would otherwise make low-frequency, *LISA*-band GWs. In this paper, we study the interplay between different types of migration torques, focusing especially on the "thermal torques" generated by the thermal response of the AGN to embedded stellar-mass BHs that accrete through their own mini-discs. In contrast to previous work, we find that Type I torques cannot produce migration traps on their own, but thermal torques often do, particularly in low-mass AGN. The migration traps produced by thermal torques exist at much larger distances (~ 10^{3-5} gravitational radii) than do previously identified Type I traps, carrying implications for GW populations at multiple frequencies. Finally, we identify a bifurcation of AGN discs into two regimes: migration traps exist below a critical AGN luminosity, and do not at higher luminosities. This critical luminosity is fit as $log_{10}L_{AGN}^{c} = 45 - 0.32log_{10}(\alpha/0.01)$ where α is the Shakura-Sunyaev viscosity parameter, a range compatible with recent claims that LVK GWs are not preferentially associated with high-luminosity AGN.