
PyFstat tutorials – MMCW workshop, Nikhef
David Keitel & Rodrigo Tenorio, 2023/07/13

This tutorial is licensed under CC-BY-NC-SA-4.0.
DCC: https://dcc.ligo.org/G2300986

Basic background and instructions
PyFstat is a CW data analysis toolkit/interface built on top of LALSuite, using the SWIGLAL
wrappings (by Karl Wette) to call functions of the lalpulsar library, and some of its
executables via the command-line (using the subprocess module).
PyFstat does not constitute a full replacement for all LALSuite CW functionality. Rather it is...

● An easier way to access some standard functionality (e.g. generating and working
with SFTs) without leaving a python interface.

● A consolidated interface to the low-level F-statistic computation tools from lalpulsar,
which allows easier development of new search algorithms on top of it (instead of
having to write in C and rebuild all of LALSuite, or figuring out the - in parts quite
obscure - “raw” SWIG-wrapped python interface yourself).

● A collection of ready-to-use search classes for simple (square) grid searches (no
fancy metric setups like with e.g. lalpulsar_ComputeFstatistic_v2 and
lalpulsar_Weave), and particularly for MCMC analyses that can be useful in
candidate follow-up applications.

See here for a bibliography of works to cite when using PyFstat for papers; the package was
originally developed and introduced by Ashton&Prix2018 with a focus on the MCMC followup
application; and the current reference for the package in general is this JOSS paper
(Keitel+2021).

See here for installation instructions for your local machine (or any cluster you have access
on, as long as you can use conda/mamba or venvs). Also see the "Troubleshooting" section
below.
Alternatively, you can use Google Colab, but note that this can be quite slow. The examples
for today are prepared in notebook format in this drive. You have to be logged into any
Google account to be able to launch them interactively.

For offline running, if you’ve managed to install successfully, the full set of examples is
available for file-by-file download via the documentation page, via github, or by cloning the
whole repository:

>$ git clone https://github.com/PyFstat/PyFstat.git
Having downloaded one of those .py files, you generally have to run them like

>$ python PyFstat_example.py
(They don’t include a shebang for compatibility reasons with readthedocs and binder.)

1

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://dcc.ligo.org/G2300986
https://github.com/PyFstat/PyFstat/
https://lscsoft.docs.ligo.org/lalsuite/
https://arxiv.org/abs/2012.09552
https://github.com/PyFstat/PyFstat/#citing-this-work
https://arxiv.org/abs/1802.05450
https://doi.org/10.21105/joss.03000
https://doi.org/10.21105/joss.03000
https://github.com/PyFstat/PyFstat/wiki/conda-environments
https://drive.google.com/drive/folders/1cr7cd15mlDHl9wp-ij0DfeOdyvmpHPXn
https://pyfstat.readthedocs.io/en/stable/examples.html
https://github.com/PyFstat/PyFstat/tree/master/examples


Example 1: generating data and spectrograms
Ideally without reading the notebook/script in detail first (to be unbiased for the first quiz
question below), you can do either of the following:

● run this Colab notebook
● from a local git clone, run

>$ python examples/other_examples/PyFstat_example_spectrogram.py

● download script from here and run
>$ python PyFstat_example_spectrogram.py

In a newly generated directory PyFstat_example_data/PyFstatExampleSpectrogram/
under your current working path, you should see these files (or if you run as a Colab
notebook, the plot should show up inline):

● H-35040_H1_1800SFT_PyFstatExampleSpectrogram-1000000000-63072000.sft

The generated data in the SFT format discussed before.
● PyFstatExampleSpectrogram.cff Parameters of a simulated CW signal.
● PyFstatExampleSpectrogram.log Copy of logging from while running.
● PyFstatExampleSpectrogram.png

The following plot of an extremely strong signal’s time-frequency track over a much
weaker noise background (real signals would never stand out visually like this):

QUIZ:

1. How many kinds of modulations can you identify here, and what are their causes?

TASKS:

(now look inside the notebook/script, box 5 / L53 will answer the quiz question)
1. Can you make one of the modulations disappear by changing the

“signal_parameters”?
2. Shouldn’t there be another one visible (short period)? Does it show up if you just

zoom in (changing axis ranges)? What parameter of the signal or data could you
change to make it better visible?

2

https://colab.research.google.com/drive/1LQgHsy6TDruBCr9AqCI5j7LMewlzzZZO
https://raw.githubusercontent.com/PyFstat/PyFstat/master/examples/other_examples/PyFstat_example_spectrogram.py


Example 2: F-stat grid and MCMC searches
You can do either of the following:

● run this Colab notebook
● from a local git clone, run

>$ python examples/mcmc_vs_grid_simple_example/PyFstat_example_simple_mcmc_vs_grid_comparison.py

● download script from here and run
>$ python PyFstat_example_simple_mcmc_vs_grid_comparison.py

This time don’t be shy about sneaking a peek into the details of the notebook/script in
advance. Just ignore the plotting helper functions defined in box 7 of the notebook / L56-111
of the script, the interesting parts are only those above and below that.
Here we will generate a shared set of SFT data, then run first a grid-based and then an
MCMC-based analysis on it, and make some comparison plots. Results will be in this
directory (except for plots that in the notebook will be inline):
PyFstat_example_data/PyFstatExampleSimpleMCMCvsGridComparison/

QUIZ:

1. Have a look over the command-line output that the script generates:
a. How many templates does the grid cover? How much time did a

single-template calculation take on your system?
b. By comparison, how many individual per-template F-statistics has the MCMC

search approximately evaluated? (taking into account the final number of
samples, the number of chains, the burnin/production split, and the
acceptance fraction)

2. Have a look over all of the plots produced and see if you can make sense of them.
(Note: some are a bit redundant, and sorry for not all being exactly publication
quality.)

a. You should notice some offset between the injection point and the maximum
points recovered by grid and MCMC searches. Given the observation time
and the approximate expected scaling of the metric, is this offset significant?

TASKS:

1. Try what happens with a weaker signal (lower injection h0 in box 5 / L41).
2. Try “sky = True” in box 3 / L18. (Note that results will land in a separate directory.)
3. Try to change the MCMC priors to Gaussians in box 12 / L199ff – see

documentation here, in short you need "type": "norm" and instead of the
parameters "lower" and "upper" you need the pair of "loc" for location (mean)
and "scale" (stdev). Observe what happens as you make them wider, or
mismatched from the injection.

3

https://colab.research.google.com/drive/13LnKc9DvRj1y07kFFy--QAgQ9JMZX7uH
https://raw.githubusercontent.com/PyFstat/PyFstat/master/examples/mcmc_vs_grid_simple_example/PyFstat_example_simple_mcmc_vs_grid_comparison.py
https://pyfstat.readthedocs.io/en/stable/pyfstat.html#defining-the-prior


Examples 3/4 (optional): more MCMCs
If you have time left or would like to play around with things further after the workshop,
cleaner starting points than the slightly messy grid-vs-MCMC comparison script above are

● PyFstat_example_fully_coherent_MCMC_search.py
● PyFstat_example_semi_coherent_MCMC_search.py

You should easily be able to modify these to try out different signal injection parameters,
dimensionalities of the search parameter space (varying the sky position, higher spindowns)
and MCMC algorithmic parameters.

Example 5 (optional): cumulative 2F
This one gives a good intuition for how the F-statistic actually behaves. Download the script
from here and execute. (Sorry, we didn’t prepare a Colab version of this one.)

● This one again generates SFT data with a CW signal in it, for 2 detectors H1 and L1.
● Then in L69 it uses another LALSuite tool lalpulsar_predictFstat to predict

how large the total 2F from such a signal should be, given the known analytical
distribution of 2F, at a perfectly matched template, and as an average over noise
realisations.

● Then it computes the actual value, but not only over the full duration, but cumulatively
in the sense that it does searches over [tstart,T1], [tstart,T2], …, [tstart,tend]. Also for
H1, L1 and the coherent combination H1L1.

● And it compares these to partial predictions for each corresponding duration; see the
plots generated in
PyFstat_example_data/PyFstatExampleTwoFCumulative/

QUIZ:

1. Does the total predicted 2F value (line “Predicted twoF value” in the
command-line output) roughly match what you’d expect for the given signal
amplitude, noise spectral density, and data duration?

2. Based on the plots, does this signal behave as expected for a true, persistent CW
signal? And does it also pass the traditional “detector consistency veto” of
single-detector values not exceeding the combined multi-detector statistic?

TASKS:

1. Try to modify this for a CW-like long-duration transient signal (as could be produced
e.g. by a newborn NS or a glitching pulsar): you’ll need to add three injection
parameters “transientStartTime”, “transientTau” (duration) and
“transientWindowType” (an amplitude modulation window, choose “rect” for a
simple turn-on, stay-constant, turn-off rectangular window). For StartTime and Tau,
choose anything that falls within the original data duration.
NOTE: You could in principle add these new parameters to the
get_predict_fstat_parameters_from_dict() call in L52, but while
preparing this tutorial, I noticed a small key translation bug with that one. Instead,

4

https://raw.githubusercontent.com/PyFstat/PyFstat/master/examples/mcmc_examples/PyFstat_example_fully_coherent_MCMC_search.py
https://github.com/PyFstat/PyFstat/blob/master/examples/mcmc_examples/PyFstat_example_semi_coherent_MCMC_search.py
https://raw.githubusercontent.com/PyFstat/PyFstat/master/examples/other_examples/PyFstat_example_twoF_cumulative.py


assuming you have defined a new dict transient_parameters for adding to the
injection, manually add these three lines after it:

PFS_input["transientStartTime"] = transient_parameters["transientStartTime"]
PFS_input["transientTau"] = transient_parameters["transientTau"]
PFS_input["transientWindowType"] =

transient_parameters["transientWindowType"]

Now what do the accumulation plots look like? Can you make sense of the different
slopes of the predicted and measured curves?

5



Troubleshooting
● If you can’t use conda for some reason, a standard python venv and using pip should

work as well on most systems, if your system-installed python is recent enough
(>=3.8). Note you may have to do an extra self-upgrade step for pip because with too
old versions, no recent enough LALSuite will be available:

python -m venv pyfstat-venv
source pyfstat-venv/bin/activate
pip install –-upgrade pip setuptools
pip install pyfstat

.
● To verify your installation works:

1. Run lalpulsar_version
This should output several package versions, ending with
LALPulsar: 6.0.1 (CLEAN
9a0927aac5e23cd7c93ada22a24aef9e3a12a2c7)

2. Download the file
https://pyfstat.readthedocs.io/en/stable/_downloads/8c78c80844a39a078813a0c3fd8
2afdb/PyFstat_example_grid_search_F0.py

3. Run, from the right directory: python PyFstat_example_grid_search_F0.py
This should run through without errors, mention that it is running PyFstat 2.0.0, and
produce some output in a directory
PyFstat_example_data/PyFstatExampleGridSearchF0/ created under
your current working directory. PyFstat generally tries to reuse data on disk if
possible. Normally it is quite smart about this, but for example when you change
signal injection parameters, sometimes it will not delete previous SFT files and there
will be conflicting files in the same directory that it tries to read together. A typical
error from that starts with “data gap or overlap”. In such a case, just clean out
the output directory.

● If you get too creative with modifying signal or search parameters, it’s possible that
your search ends up trying to read SFT data outside the narrow band that was
generated. In such a case, you may get the same error message as above, or
another quite cryptic one, always referring to some number of bins. In such a case,
try increasing the “Band” parameter of the Writer class.

● If you get LaTeX errors related to plot labels, on Debian/Ubuntu-based systems the
following may help, or for other OSs you may find similar solutions online:
sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended
cm-super

● Ask us f2f, via mail, or LVK mattermost (if you’re a member) for other things that go
wrong.

6

https://pyfstat.readthedocs.io/en/stable/_downloads/8c78c80844a39a078813a0c3fd82afdb/PyFstat_example_grid_search_F0.py
https://pyfstat.readthedocs.io/en/stable/_downloads/8c78c80844a39a078813a0c3fd82afdb/PyFstat_example_grid_search_F0.py


Acknowledgments
David Keitel is supported by the Spanish Ministerio de Ciencia, Innovación y Universidades
(ref. BEAGAL 18/00148) and cofinanced by the Universitat de les Illes Balears. Rodrigo
Tenorio is supported by the Spanish Ministerio de Universidades (ref. FPU 18/00694). This
work was supported by the Universitat de les Illes Balears (UIB); the Spanish Ministry of
Science and Innovation (MCIN) and the Spanish Agencia Estatal de Investigación (AEI)
grants PID2019-106416GB-I00/MCIN/AEI/10.13039/501100011033, RED2022-134204-E,
RED2022-134411-T; the MCIN with funding from the European Union NextGenerationEU
(PRTR-C17.I1); the FEDER Operational Program 2021-2027 of the Balearic Islands; the
Comunitat Autònoma de les Illes Balears through the Direcció General de Política
Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006
(PRD2018/23, PDR2020/11); the Conselleria de Fons Europeus, Universitat i Cultura del
Govern de les Illes Balears; and EU COST Action CA18108. This material is based upon
work supported by NSF's LIGO Laboratory which is a major facility fully funded by the
National Science Foundation.

7


