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Example 1: generating data and spectrograms
QUIZ:

1. How many modulations can you identify here, and what are their causes?

ANSWER: One can see by eye the expected yearly modulation from Earth’s orbit,
but not the daily one from Earth’s rotation (see task 1 below). The medium-duration
modulation seen here comes from the binary orbital parameters of the injected
signal, note especially this one: "period": 50 * 86400

TASKS:

(now look inside the notebook/script, box 5 / L53 will answer the quiz question: we’ve been
calling a special BinaryModulatedWriter class that knows how to inject a signal with
orbital modulation for a CW signal from a NS in a binary system.)

1. Can you make one of the modulations disappear by changing the
“signal_parameters”?
ANSWER: Commenting out the three lines for binary parameters "tp", "asini"
and "period", we get the following plot:
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2. Shouldn’t there be another one visible (short period)? Does it show up if you just
zoom in (changing axis ranges)? What parameter of the signal or data could you
change to make it better visible?
ANSWER: Yes we should be able to see the daily modulation from Earth’s rotation,
but we don’t really even if we zoom in both horizontally and vertically:

The reason is that the natural resolution of a SFT-based spectrogram is 1/Tsft, i.e. for
the 1800s used here we only have ~5mHz resolution. (This may seem a very fine
resolution to CBCers, but it would be very coarse for radio astronomers!) So we
should be able to make it more visible by using longer SFTs. And indeed, if we
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change to "Tsft": 18000, we start seeing the daily modulation clearly:
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Example 2: F-stat grid and MCMC searches
QUIZ:

1. Have a look over the command-line output that the script generates:
a. How many templates does the grid cover, and how does this simple example

compare to production CBC searches in that regard? How much time did a
single-template calculation take on your system?
ANSWER: Early in the output, there should be a line
“INFO : Running search over a total of 100200 grid points…”

Right before it goes through a progress bar for a few seconds. So that’s quite
a few templates for such a short time! On my laptop, it was showing ~10kit/s,
i.e. 10 thousand iterations per seconds, or less than a millisecond per
template. This is just 1 month of simulated data, but the main cost factor of
real searches comes not from the individual evaluations being costly, but from
the huge template banks: millions still count as “narrowband”, and all-sky
searches easily have 1014 to 1017 templates.

b. By comparison, how many individual per-template F-statistics has the MCMC
search approximately evaluated? (taking into account the final number of
samples, the number of chains, the burnin/production split, and the
acceptance fraction)
ANSWER: The output file MCMCSearchF0F1_samples.dat has 20k lines
(minus header comments), corresponding to the number of output samples.
Where does this number come from? The MCMC setup (box X / L228-232 of
the script) is

ntemps = 2
log10beta_min = -1
nwalkers = 100
nsteps = [200, 200] # [burnin,production]

This gives us:
nwalkers*nstepsprod = nsamples = 100*200 = 20000
As the acceptance fraction I got [0.69,0.65] in the burnin and production steps,
respectively, so in total this run should have sampled
ntemps*nwalkers*(nstepsburn/accburn+nstepsprod/accprod)=
2*100*(200/0.68+200/0.65) = 120362 which is at a similar level as
the grid search.
Of course in practice the setups of both approaches need to be tuned to the
application at hand, and there’s no general rule about the relative runtimes for
a “good coverage” of a region. As found by Ashton&Prix2018 and
Tenorio+2021, especially in multi-stage hierarchical setups, the MCMC
approach can get away with quite few evaluations (short runtimes) to zoom
into the interesting parts of limited parameter-space regions (candidate
followup scenario).
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2. Have a look over all of the plots produced and see if you can make sense of them.
(Note: some are a bit redundant, and sorry for not all being exactly publication
quality.)

a. You should notice some offset between the injection point and the maximum
points recovered by grid and MCMC searches. Given the observation time
and the approximate expected scaling of the metric, is this offset significant?
ANSWER: The offsets are best seen in box X / the file
grid_vs_mcmc_F0F1_zoom.png and should be on the order of half a grid
spacing for the grid search and less for the MCMC, or in absolute terms ~1e-8
in frequency and ~1e-14 in f1dot. Looking at box X / L131f we see that the
grid spacing here was defined in terms of the natural metric scaling for a very
fine mismatch:

m = 0.001
dF0 = np.sqrt(12 * m) / (np.pi * duration)
dF1 = np.sqrt(180 * m) / (np.pi * duration ** 2)

Hence, it’s fair to say that the signal has been recovered extremely accurately
by both methods – however, that’s no wonder given that it is very strong, with
a recovered 2F~5000!

TASKS:

1. Try what happens with a weaker signal (lower injection h0 in box 5 / L41).
ANSWER: lowering to "h0": 0.005 * sqrtSX (corresponding to a depth of
200), both grid and MCMC search no longer recover the injection point quite as
accurately, but still well.

On the other hand, educing h0 by another factor 10 (corresponding to a depth of
2000), we only recover random noise:
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2. Try “sky = True” in box 3 / L18. (Note that results will land in a separate directory.)
ANSWER: After running for a few minutes this time, corner plots for example should
look like this:

As we can also see from the direct comparison plots, our grid search setup now
obviously had not gotten ideal spacings in each dimension, as the MCMC samples
explore them quite differently!
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3. Try to change the MCMC priors to Gaussians in box 12 / L199ff – see
documentation here, in short you need "type": "norm" and instead of the
parameters "lower" and "upper" you need the pair of "loc" for location (mean)
and "scale" (stdev). Observe what happens as you make them wider, or
mismatched from the injection.

4. ANSWER:We see that the injection is strong enough to zoom in from a quite wide
prior, for example with

theta_prior = {
"F0": {

"type": "norm",
"loc": inj["F0"],
"scale": 4*DeltaF0,

},
"F1": {

"type": "norm",
"loc": inj["F1"],
"scale": 4*DeltaF1,

},
"F2": inj["F2"],
}

we still get very similar corner and comparison plots, while the prior_posterior and
walker plots clearly show the zoom-in:
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Increasing the widths further to 100*DeltaFk we see that the peak is no longer
covered as well, but in principle it still worked:

Examples 3/4 (optional): more MCMCs
If you have time left or would like to play around with things further after the workshop,
cleaner starting points than the slightly messy grid-vs-MCMC comparison script above are

● PyFstat_example_fully_coherent_MCMC_search.py
● PyFstat_example_semi_coherent_MCMC_search.py

You should easily be able to modify these to try out different signal injection parameters,
dimensionalities of the search parameter space (varying the sky position, higher spindowns)
and MCMC algorithmic parameters.

Example 5 (optional): cumulative 2F

QUIZ:

1. Does the total predicted 2F value (line “Predicted twoF value” in the
command-line output) roughly match what you’d expect for the given signal
amplitude, noise spectral density, and data duration?
ANSWER: The expectation value of 2F in noise+signal data is 4 + SNR^2 where the
SNR goes as h0 * sqrt(duration / SX) where SX is the noise PSD (its sqrt is the ASD,
called sqrtSX in the codes). So we expect:
>>> (amplitude_parameters["h0"]/gw_data["sqrtSX"])**2*gw_data["duration"]
864.0

and the script gives us “Predicted twoF value: 670.48” or 78% of the
simplified calculation. This is within the expected range from different sky-position
dependent antenna pattern functions of the detectors, which our simplified calculation
ignored.
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2. Based on the plots, does this signal behave as expected for a true, persistent CW
signal? And does it also pass the “detector consistency veto” briefly discussed in the
lecture?
ANSWER: The plots look like this:

As we can see, there is some variation in how the 2F accumulates over the 100 days
of observation, due to both random noise fluctuations and the different orientation of
the detectors (note that lalapps_predictFstat does take sky location into
account, not just the rough SNR scaling we tested above!). But there is no significant
deviation from the expectation: H1L1 and H1 separately stay within 1sigma, and L1
barely leaves it.
Also, we have a total 2F of ~700 for the H1L1 combined result and ~300 and ~400
for the individual detectors respectively, so this passes the detector consistency veto.
(Note that the H1L1 result is not simply the sum of H1 and L1 F-statistics, which are
power statistics and hence would be an incoherent sum, but computed as the
coherent matched filter over the combined data, with the right phase offsets
corresponding to the detector locations and orientations.)

TASKS:

1. Try to modify this for a CW-like long-duration transient signal (as could be produced
e.g. by a newborn NS or a glitching pulsar): you’ll need to add three injection
parameters “transientStartTime”, “transientTau” (duration) and
“transientWindowType” (an amplitude modulation window, choose “rect” for a
simple turn-on, stay-constant, turn-off rectangular window). For StartTime and Tau,
choose anything that falls within the original data duration.
NOTE: You could in principle add these new parameters to the
get_predict_fstat_parameters_from_dict() call in L55, but while
preparing this tutorial, I noticed a small key translation bug with that one. Instead,
assuming you have defined a new dict transient_parameters for adding to the
injection, manually add these three lines after it:

PFS_input["transientStartTime"] = transient_parameters["transientStartTime"]
PFS_input["transientTau"] = transient_parameters["transientTau"]
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PFS_input["transientWindowType"] =
transient_parameters["transientWindowType"]

Now what do the accumulation plots look like? Can you make sense of the different
slopes of the predicted and measured curves?
ANSWER: Defining the transient parameters in L49 as:

transient_parameters = {
"transientStartTime": gw_data["tstart"]+0.25*gw_data["duration"],
"transientTau": 0.5*gw_data["duration"],
"transientWindowType": "rect",

}

and adding the above PFS_input keys and also
**transient_parameters to the BinaryModulatedWriter call, we get the
following H1L1 plot (and similar for H1 and L1 individually):

As we can see, this now doesn’t behave as predicted at all: no signal is accumulated
at the start, then it grows linearly as expected while the injection is “on”, and at the
end it actually goes down again, because the coherent matched filter that is the
F-statistic now penalises the added data for having mismatched phase evolution for
those final weeks.
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