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Signal detection as hypothesis testing

Suppose we have random data x and we want to know whether a signal s
is present in the data.

• Null hypothesis H0 : signal is absent, data have distribution p0(x),

• Alternative hypothesis H1 : signal is present, data have distribution
p1(x).

A hypothesis test (or decision rule) δ is a partition of the observation set
into two subsets R and its complement R’. If data are in R we accept null
hypothesis otherwise we reject it.
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Neyman-Pearson approach

There are two kind of errors that we can make. Type I error is choosing
hypothesis H1 when H0 is true and type II error is choosing H0 when H1 is
true.

• Type I error - false alarm probability: PF =
∫
R′ p0(x) dx

• Type II error - false dismissal probability: PS = 1−
∫
R p1(x) dx

Neyman-Pearson lemma:

Test that maximizes probability of detection subject to fixed false
alarm probability is the likelihood ratio test.

Thus the test is to compare the likelihood ratio Λ

Λ = p1(x)
p0(x)

to a threshold calculated from the accepted false alarm probability.
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Parameter estimation

• Very often we know the waveform of the signal that we are searching
for in the data in terms of a finite number of unknown parameters.

• We would like to find optimal procedures of estimating these
parameters.

• An estimator of a parameter θ is a function θ̂(x) that assigns to each
data the ”best” guess of the true value of θ.

• Note that because θ̂(x) depends on the random data an estimator is
always a random variable.
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Parameter estimation cont.

The simplest, although an ad hoc method, is the maximum likelihood
estimation.
We introduce the likelihood function:

l(θ; x) := p(x ; θ)

Maximum likelihood (ML) estimators are obtained by solving the equation

∂ ln l(θ, x)

∂θ
= 0.

Asymptotically (i.e., when signal-to-noise ratio tends to infinity) the ML
estimators are unbiased, normally distributed and their covariance matrix is
equal to the inverse of the Fisher matrix Γ defined by

Γij := E

[
∂ ln l(x ; θ)

∂θi

∂ ln l(x ; θ)

∂θj

]
, i , j = 1, . . . , k,

where k is the number of parameters.
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Cramèr-Rao bound

• The Cramèr-Rao bound states that for unbiased estimators the
covariance matrix of the estimators C ≥ Γ−1 where the inequality
A ≥ B means that the matrix A− B is non negative definite.

• Thus calculating the Fisher matrix we can get lower bound on the
variances of the estimators.

• There are more sophisticated bounds but there are cumbersome to
calculate.
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Gaussian case

Assume Gaussian, stationary, mean zero noise n and additive signal
(x = n + s).

By Cameron-Martin formula the log likelihood ratio is given by

ln Λ[x ] = (x |s)− 1

2
(s|s),

scalar product ( · | · ) is defined by (ℜ denotes the real part, Sh(f ) is
one-sided spectral density)

(x |y) := 4ℜ
∫ ∞

0

x̃(f )ỹ∗(f )

Sh(f )
df .

Likelihood ratio test is equivalent to correlating the data x with the
expected signal s and comparing the correlation to a threshold Go .
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Gaussian case cont.

• The correlation G = (x |s) is called the matched filter.

• Using the relation
E [(n|s)(n|s)] = (s|s),

we have
E [G ] = (s|s), Var [G ] = (s|s)

• Signal-to-noise ratio ρ is defined as

ρ =
√

(s|s).

• Probabilities of false alarm and detection

PF (Go) = erfc(
Go

ρ
), PD(Go) = 1− erfc(

Go

ρ
− ρ)

depend of one parameter - signal-to-noise ratio.
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Receiver operating characteristic (ROC)
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Detection of signals with unknown parameters

We introduce the generalized likelihood ratio

L = ln

[
maxθ

p1(θ; x)

p0(x)

]
= ln

[
p1(θ̂; x)

p0(x)

]
.

and we compare it to a threshold.
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Gaussian case and GW signals

• Often GW signal s can be represented as a linear combination of
certain time dependent functions of usually unknown m parameters η:

s(a, η) =
n∑

k=1

akhk(t; η) = a · h.

• Then

ln Λ(a, η) = aT · N − 1

2
aT ·M · a.

where
N = (x |h), M = (h|h).
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Gaussian case and GW signals cont.

• ML estimators â of amplitudes are found by solving the equations

∂lnl

∂a
= N = M · a = 0

and are obtained in a closed analytic form

â = M−1 · N.

• Substituting â for a we have

L(η) = 1

2
NT ·M−1 · N.

This is the L - statistic.

L depends only on m parameters η (called intrinsic), the n amplitude
parameters a (called extrinsic) are eliminated.
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False alarm and detection probabilities

• 2× L - statistic has χ2 distribution with n degrees of freedom when
signal is absent and non-central χ2 distribution with non-centrality
parameter ρ2 when signal is present.

• In a search we evaluate L over a grid in m-dimensional parameter
space.

• To estimate false alarm probability we need to estimate number of
independent trials Nc .

• False alarm probability is the probability PT
F (Lo) that L exceeds the

threshold Lo in one or more cells.

PT
F (Lo) = 1−

[
1− PF (Lo)

]Nc ,

where PF (Lo) is the probability of exceeding threshold Lo from χ2

distribution.
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Estimations of the number of independent trials

• Consider the autocovariance function C of L
C(η, η′) = E [

(
L[x ; η]−m(η)

)(
L[x ; η′]−m(η′)

)
].

• Define and elementary cell as the region with the boundary where maximum
of C falls by 1/2.

• Perform the Taylor expansion of C(η, η′) around the maximum and keep the
first order terms to find that elementary cell is approximately defined as

m∑
k=1

m∑
l=1

Γ̃kl(η)∆ηk ∆ηl ≤
1

2
.

• Define volume of the elementary cell as

Vc =
(π/2)m/2

(m/2)!
√
detΓ̃

.

and number of Nc of the elementary cells as

Nc =
V

Vc
,

where V is the hypervolume of the parameter space.
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Signal-to-noise ratio and Fisher matrix

Signal-to-noise ratio:

ρ2 = (s|s) = aT ·M · a.

Components of the Fisher matrix:

Γij = (hi |hj).

The ML estimators of the amplitudes are unbiased

E [â] = a

and minimum variance. Covariance matrix C

C = M−1

is exactly equal to the inverse of the Fisher matrix. Such estimators are
called efficient.
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Two amplitude case

• Signal
s = Ashs(t; η) + Achc(t; η).

• Amplitude estimators

Âs =
C (x |hs)−M(x |hc)

D
, Âc =

S(x |hc)−M(x |hs)
D

,

where C := (hc |hc), S := (hs |hs), M := (hs |hc), and D := SC −M2.

• Statistic

L(x ; η) = S(x |hc)2 + C (x |hs)2 − 2M(x |hs)(x |hc)
2D

.
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Noise whitening

To take into account coloured noise perform whitening by dividing the
Fourier transform of the data by the square root of the spectral density of
noise then taking the inverse Fourier transform. Thus the whitened data
xw (t) is given by

xw (t) =

(
F−1

{
x̃√
Sh

})
(t),

where F−1 is the inverse Fourier transform.

Matched filter s to the signal need also to be whitened.

By Parseval’s theorem the scalar ( · | · ) is then given by

(x |s) = 2

∫ ∞

−∞
xw (t)sw (t) dt.

18 / 32



Monochromatic signal in white noise

s = Ao cos(ωot − ϕo).

Rewrite the signal (1) as

s = Ac cos(ωot) + As sin(ωot),

where

Ac = Ao cosϕo , As = Ao sinϕo .

For white noise Sh(f ) = So = const.

(x |s) = 2

So

∫ ∞

−∞
x(t)s(t) dt.

Assuming finite observation time To but very much larger than the signal
period:

C ≃ S ≃ To

So
, M ≃= 0.
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Monochromatic signal in white noise cont.

L statistic is given by

L =
2

ToSo
[(

∫ To

0
x(t)cos(ωot) dt)

2 + (

∫ To

0
x(t)sin(ωot) dt)

2] (1)

or

L =
2

ToSo
|F̃ (ωo)|2, (2)

where F̃ (ωo) =
∫ To

0 x(t)e−iωot dt is the Fourier transform.

Amplitude estimators are given by

Âs =
2

To

∫ To

0
x(t)cos(ωot) dt, Âc =

2

To

∫ To

0
x(t)sin(ωot) dt.
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Parameter estimation - Monte Carlo simulations

To test quality of parameter estimation we perform Monte Carlo
simulation by injecting signals to Gaussian noise or to real data.

• Add signal to the data for a certain SNR.

• Calculate the statistic L over a grid in the parameter space.

• Find maximum of L over the grid.

• Do a fine search of the maximum with a maximization routine with
initial parameters from the previous step.

• Repeat the procedure for an array of SNRs.
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Parameter estimation - Monte Carlo simulations cont.

Threshold effect - below certain SNR large deviations from the
Cramèr-Rao bound.
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Deviations from the Cramèr-Rao bound

• Consider parameter space divided into elementary cells Nc . As a result of
noise, maximum of the L-statistic may fall in the cell where there is no
signal. This is an outlier.

• Assume that outliers are uniformly distributed over the search interval of a
parameter.

σ2
out =

∆2

12
,

where ∆ is the length of the search interval for a given parameter.

• Total variance σ2 of the estimator of a parameter is the weighted sum of the
two errors

σ2 = σ2
out q + σ2

CR(1− q),

where q is the probability of the outlier σCR is the rms error from the Fisher
matrix.

• The probability q can be approximated by the following formula:

q = 1−
∫ ∞

0

p1(ρ,L)

(∫ L

0

p0(y)dy

)Nc−1

dL,

where p0 and p1 are probability density functions of respectively false alarm
and detection. 23 / 32



Deviations from the Cramèr-Rao bound cont.

circles - MC simulation, line - CR bound, thick line - model
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GW signal from a rotating star

The detector’s response function s to a gravitational wave from a rotating
neutron star has four amplitude parameters,

s(t) =
4∑

k=1

Ak hk(t; η).

The extrinsic parameters are the four constant amplitudes Ak given by

A1 = h0+ cos 2ψ cosϕ0 − h0× sin 2ψ sinϕ0,

A2 = h0+ sin 2ψ cosϕ0 + h0× cos 2ψ sinϕ0,

A3 = −h0+ cos 2ψ sinϕ0 − h0× sin 2ψ cosϕ0,

A4 = −h0+ sin 2ψ sinϕ0 + h0× cos 2ψ cosϕ0,

where ψ is the polarization angle and ϕo is the constant phase and

h0+ =
1

2
h0(1 + cos2 ι), h0× = h0 cos ι,

where ι is the angle between the angular momentum vector of the rotating
neutron star and the line of sight. 25 / 32



GW signal from a rotating star cont.

For the simplest model of a rotating neutron star as a triaxial ellipsoid

h0 =
4π2G

c4
Q
f 2GW
r
,

where Q is the quadrupole moment of the star.
The four functions of time hk depend on sky position and frequency:

h1(t; η) = a(t; δ, α) cosϕ(t; f, δ, α),

h2(t; η) = b(t; δ, α) cosϕ(t; f, δ, α),

h3(t; η) = a(t; δ, α) sinϕ(t; f, δ, α),

h4(t; η) = b(t; δ, α) sinϕ(t; f, δ, α).

We can approximate the phase ϕ(t) by

ϕ(t; η) ∼= 2π
s∑

k=0

fk
tk+1

(k + 1)!
+

2π

c
n0(δ, α) · rd(t)

s∑
k=0

fk
tk

k!
.
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GW signal from a rotating star cont.

We can assume that over the bandwidth of the signal Sh(f ) is nearly
constant and equal to So

(x |s) = 2

So
⟨x(t) s(t)⟩ dt.

where

⟨·⟩ =
∫ To

0
· dt.

With approximation of a long observation time w.r.t. wave period we have

⟨h1 h3⟩ ∼= 0, ⟨h1 h4⟩ ∼= 0, ⟨h2 h3⟩ ∼= 0, ⟨h2 h4⟩ ∼= 0,

⟨h1 h1⟩ ∼= ⟨h3 h3⟩ ∼=
1

2
A, ⟨h2 h2⟩ ∼= ⟨h4 h4⟩ ∼=

1

2
B, ⟨h1 h2⟩ ∼= ⟨h3 h4⟩ ∼=

1

2
C ,

A =
〈
a2
〉
, B =

〈
b2
〉
, C = ⟨ab⟩.
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GW signal from a rotating star cont.

Maximum likelihood estimators Âk of the amplitudes Ak are given by

Â1
∼= 2

B⟨xh1⟩ − C ⟨xh2⟩
D

, Â2
∼= 2

A⟨xh2⟩ − C ⟨xh1⟩
D

,

Â3
∼= 2

B⟨xh3⟩ − C ⟨xh4⟩
D

, Â4
∼= 2

A⟨xh4⟩ − C ⟨xh3⟩
D

,

where D = AB − C 2.
With the above approximations the statistic known as F-statistic takes
the following form.

F [x ; η] ∼=
2

So

B|Fa|2 + A|Fb|2 − 2Cℜ(FaF ∗
b )

D
.

where Fa and Fb are given by:

Fa =< x(t)a(t) exp[−iϕ(t)] >,

Fb =< x(t)b(t) exp[−iϕ(t)] > .

2×F-statistic has a χ2 distribution with 4 degrees of freedom.
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Resampling

We want to evaluate the F - statistic efficiently using the FFT.
The phase ϕ(t) can be written as

ϕ(t) = ω0[t + ϕm(t)] + ϕs(t),

where

ϕm(t) :=
n0 · rd(t)

c
,

ϕs(t) :=
s∑

k=1

ωk
tk+1

(k + 1)!
+

n0 · rd(t)
c

s∑
k=1

ωk
tk

k!
,

The functions ϕm(t) and ϕs(t) do not depend on the frequency ω0.

Fa =

∫ T0

0
x(t) a(t) e−iϕs(t) exp

{
− iω0[t + ϕm(t)]

}
dt.
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Resampling cont.

We introduce a new time variable tb, so called barycentric time ,

tb := t + ϕm(t;n0).

In the new time coordinate the integral is approximately given by

Fa ∼=
∫ T0

0
x [t(tb)]a[t(tb)]e

−iϕs [t(tb)]e−iω0tb dtb.

This is a Fourier transform that can be calculated efficiently with the FFT.
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Conclusions

• Generalized likelihood ratio test, leading to F-statistic, results in an
efficient method to detect the signal and estimate its parameters.

• Main problem is that for searches of a large parameter space (like
all-sky searches) it becomes computationally intractable. Usually
coherent F-statistic search becomes a part of a hierarchical search.

• Other data analysis algorithms are also widely used.

• For accurate parameter estimation usually Bayesian estimation is
adopted.

see Keith Riles, Living Reviews in Relativity 26, 3 (2023) for a
comprehensive review of CW analysis methods.
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Additional slides

Effective banks of templates in detection of almost monochromatic
gravitational waves

• P. Jaranowski and A. Pisarski:
P. Jaranowski and A. Pisarski, arXiv:2302.05204 [gr-qc].
A. Pisarski, P. Jaranowski, and M. Pietka, Phys. Rev. D 83, 043001
(2011).
A. Pisarski and P. Jaranowski, Class. Quant. Grav. 32, 145014
(2015).

• with early contributions by A. Królak and M. Pietka:
P. Astone, K. M. Borkowski, P. Jaranowski, M. Pietka, and A. Królak,
Phys. Rev. D 82, 022005 (2010).

• Templace placement as covering problem, R. Prix:
R. Prix, Class. Quant. Grav. 24:S481-S490 (2007).

• Fisher matrix as a metric for template placement, B. Owen:
B. Owen, Phys. Rev. D53, 6749 (1996).
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Linear model of the signal (2)

Simplified linear model of the signal for all-sky searches
(with s spindowns included):

h(t; h0,Ψ0, ξ) = h0 sin
(
Φ(t; ξ) + Φ0

)
, (5a)

Φ(t; ξ) =
s∑

k=0
ωk

(
t

To

)k+1
+ α1 µ1(t) + α2 µ2(t), (5b)

the phase Φ(t; ξ) is a linear function of the parameters ξ,

ξ := (ω0, ω1, . . . , ωs , α1, α2), (6a)

α1 := 2πf0(sinα cos δ cos ε+ sin δ sin ε), α2 := 2πf0 cosα cos δ. (6b)

µ1(t), µ1(t)—ephemerides (known functions of time describing motion of the detector
relatively to the barycentre of the Solar System), α is the right ascension and δ is the
declination of the GW source, ε is the obliquity of the ecliptic.



Optimal covering of the parameter space

The boundary of the region defined by the inequality C0(ξ, ξ′) = C0(τ ) ≥ Cmin
is given by the isoheight of the function C0(τ ),

C0(τ ) = Cmin ⇐⇒
d∑

i,j=1
Γ̃ij τiτj = 1− Cmin. (16)

This is the equation of:
d = 2 — ellipse,
d = 3 — ellipsoid,
d ≥ 4 — hyperellipsoid.
We want to find optimal covering of Rd by identical hyperellipsoids [defined by
Eq. (16)] (covering is defined by a grid of points being the centers of hyperellipsoids).
Optimal covering consists of possibly smallest number of hyperellipsoids,
we look for grids with the smallest possible covering thicknesses.
(The covering thickness is defined as the average number of hyperellipsoids
that contain a point in the space.)

We impose two additional constraints on grids:
1 we want to speed up computation of the F-statistic for all grid nodes

by employing the FFT algorithm;
2 in all-sky searches we want effieciently resample of data to barycentric

time—resampling is needed once per sky position for all the spindown values.



d = 2 case: directed searches with one spindown included

Two intrinsic parameters: (ω0, ω1).

The possibility of using the FFT al-
gorithm requires that the distance be-
tween the ω0-coordinates of the centers
of ellipses is determined by the resolu-
tion of the FFT:

∆ω0 = 2πN/NFFT. (17)

The plot is made for N = 344656
(two sidereal days with ∆tsample = 0.5 s),
NFFT = 220 (then ∆ω0 ∼= 2.06522),
and Cmin = 0.75. -20 -10 0 10 20
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Construction of the constrained optimal grids

Replacing the problem of finding the optimal covering of space by identical
hyperellipsoids by the problem of finding the optimal covering of space by
identical hyperspheres of unit radius; this is done by finding a linear
transformation τ = Fτ ′ which transforms the hyperellipsoid defined by the
constant value Cmin of the autocovariance function into the hypersphere of unit
radius. Also the constraints are translated into the new auxiliary parameter
space. (F is found as the Cholesky decomposition of the matrix Γ̃.)
Construction of constrained grids in the auxiliary space: the grids are simple
deformations of the d-dimensional lattice coverings A?

d of space Rd by
hyperspheres of unit radius.
The A?

d lattices are the thinnest known lattices in dimensions 2 ≤ d ≤ 5,
and they are close to the thinnest known lattices in dimensions 6 ≤ d ≤ 15.
A?

2 is the hexagonal lattice, A?
3 is the body-centered cubic (bcc) lattice.

Transformation of the found grids into the original parameter space,
using the inverse linear transformation F−1.


