

GRAVITATIONAL WAVES FROM MAGNETAR GLITCHES AND ANTIGLITCHES

Garvin Yim - Kavli Institute for Astronomy and Astrophysics, Peking University

11th July 2023, MMCW 2023, Nikhef/University of Amsterdam

g.yim@pku.edu.cn

Image credit: Ryuunosuke Takeshige

MOTIVATION – GLITCHES AND ANTIGLITCHES OBSERVATIONS

SGR 1935+2154: first magnetar localised to within the Milky Way ($d \sim 9$ kpc), has repeating FRBs

Garvin Yim

GWs from magnetar glitches and antiglitches

MOTIVATION – GLITCHES AND ANTIGLITCHES OBSERVATIONS

SGR 1935+2154: first magnetar localised to within the Milky Way ($d \sim 9$ kpc), has repeating FRBs

Younes et al. (2023)

$$\frac{\Delta\nu}{\nu} = -5.8 \times 10^{-6}$$

- ► 3 FRBs detected 3 days later, all within a single rotation $(P \approx 3.25 \text{ s}, \nu \approx 0.308 \text{ Hz})$
- ► A few hours later, a pulsed radio signal was observed by FAST for at least 20 days [Zhu et al., in press]

Garvin Yim

GWs from magnetar glitches and antiglitches

MOTIVATION – GLITCHES AND ANTIGLITCHES OBSERVATIONS

SGR 1935+2154: first magnetar localised to within the Milky Way ($d \sim 9$ kpc), has repeating FRBs

Younes et al. (2023)

$$\frac{\Delta\nu}{\nu} = -5.8 \times 10^{-6}$$

- ► 3 FRBs detected 3 days later, all within a single rotation $(P \approx 3.25 \text{ s}, \nu \approx 0.308 \text{ Hz})$
- ► A few hours later, a pulsed radio signal was observed by FAST for at least 20 days [Zhu et al., in press]

Garvin Yim

GWs from magnetar glitches and antiglitches

Ge et al. (submitted)

$$\frac{\Delta\nu}{\nu} = +6.4 \times 10^{-5}$$

- ► FRB detected 3 days later, possibly weaker FRBs even later
- Information about pulsed radio signal not reported

$$\succ \frac{\Delta \dot{\nu}}{\dot{\nu}} \approx -4.4$$

Garvin Yim

GWs from magnetar glitches and antiglitches

Antiglitches

<u>Glitches</u>

Superfluid vortex unpinning

[Anderson & Itoh, 1975]

Starquakes

[Ruderman, 1969; Baym & Pines, 1971]

Garvin Yim

GWs from magnetar glitches and antiglitches

Antiglitches

<u>Glitches</u>

Superfluid vortex unpinning

[Anderson & Itoh, 1975]

Starquakes

[Ruderman, 1969; Baym & Pines, 1971]

Garvin Yim

GWs from magnetar glitches and antiglitches

Antiglitches

Enhanced particle wind

[Tong, 2014; Younes et al., 2023]

Decrease in internal magnetisation [Mastrano, Suvorov & Melatos, 2015]

Glitches

Superfluid vortex unpinning

[Anderson & Itoh, 1975]

Oscillation modes [Yim & Jones, 2023]

Starquakes

[Ruderman, 1969; Baym & Pines, 1971]

Garvin Yim

GWs from magnetar glitches and antiglitches

Antiglitches

Asteroid capture

[Wu, Zhao & Wang, 2023]

Enhanced particle wind

[Tong, 2014; Younes et al., 2023]

Decrease in internal magnetisation [Mastrano, Suvorov & Melatos, 2015]

Glitches

Superfluid vortex unpinning

[Anderson & Itoh, 1975]

Starquakes

[Ruderman, 1969; Baym & Pines, 1971]

Oscillation modes [Yim & Jones, 2023]

Garvin Yim

GWs from magnetar glitches and antiglitches

Antiglitches

Asteroid capture

[Wu, Zhao & Wang, 2023]

Trapped ejecta

[Yim et al., this work]

Enhanced particle wind [Tong, 2014; Younes et al., 2023]

Decrease in internal magnetisation [Mastrano, Suvorov & Melatos, 2015]

Garvin Yim

• • •

GWs from magnetar glitches and antiglitches

.

Open field line region

3/15

.

Open field line region

3/15

.

MASS VS RADIUS

4/15

.

KEY MODEL ASSUMPTIONS

- Conservation of angular momentum
- > Open field line region rigidly coupled to magnetar
- Ejecta held near polar cap region (e.g. via higher order magnetic multipoles)
- \blacktriangleright Ejecta can be treated as a point mass particles held at $R_0 + l$ from the origin
- Angle between rotational and magnetic axes does not change

 $I_{system} = I_{magnetar} + I_{ejecta}$

Garvin Yim

GWs from magnetar glitches and antiglitches

glitch	Glitch
• 0	< 0
• ()	> 0
$\Delta I_{magnetar} < 0$	$\Delta I_{magnetar} < -\Delta I_{ejecta}$

 $I_{system} = I_{magnetar}$

	Antig
ΔI_{system}	>
ΔI_{ejecta}	>
Requirement:	
$\Delta I_{magnetar}$	$-\Delta I_{ejecta} < I$

Garvin Yim

GWs from magnetar glitches and antiglitches

 $I_{system} = I_{magnetar} + I_{ejecta}$

Garvin Yim

GWs from magnetar glitches and antiglitches

glitch	Glitch
• 0	< 0
• ()	> 0
$\Delta I_{magnetar} < 0$	$\Delta I_{magnetar} < -\Delta I_{ejecta}$

 $I_{system} = I_{magnetar} + I_{ejecta}$

Garvin Yim

GWs from magnetar glitches and antiglitches

glitch	Glitch
• 0	< 0
• ()	> 0
$\Delta I_{magnetar} < 0$	$\Delta I_{magnetar} < -\Delta I_{ejecta}$

MOMENT OF INERTIA

 $\delta M \ll M_0$ and $\delta R \ll R_0$, is found to be

$$\frac{\Delta I}{I_0} \approx 2\left(\frac{\delta R}{R_0}\right) - \left(\frac{\delta M}{M_0}\right)$$

 $NSs \rightarrow Treat QSs and NSs separately$

Garvin Yim

GWs from magnetar glitches and antiglitches

> The fractional change in moment of inertia, to first order in the small quantities

 $\left(-\frac{1}{2} + \frac{5}{2} \left(\frac{\delta M}{M_0} \right) \left(1 + \frac{l}{R_0} \right)^2 \sin^2 \alpha$

> We can try to rewrite the first term in terms of δM , but δR is different for QSs and

QUARK STARS

also decreases its radius

$$\delta M \approx -4\pi R_0^2 \bar{\rho} \delta R$$

([...] > 0) irrespective of how large δM is

Garvin Yim

GWs from magnetar glitches and antiglitches

> Quark stars act in the "naïve" sense, where decreasing its mass (shown by $\delta M > 0$)

$$\rightarrow \frac{\delta R}{R_0} = -\frac{1}{3}\frac{\delta M}{M_0}$$

> Putting this into the expression for the fractional change in moment of inertia gives

$$\frac{5}{2}\left(1+\frac{l}{R_0}\right)^2\sin^2\alpha-\frac{5}{3}$$

 \blacktriangleright The sign of the square brackets determines if we get a glitch ([...] < 0) or antiglitch

QUARK STARS

Garvin Yim

GWs from magnetar glitches and antiglitches

-10.0+

$$\frac{\Delta I_{QS}}{I_0} \approx \left(\frac{\delta M}{M_0}\right) \left[\frac{5}{2}\left(1 + \frac{l}{R_0}\right)^2 \sin^2 \alpha - \frac{5}{3}\right]$$

$$\frac{2.0}{1} \quad \text{For } \frac{l}{R_0} \to 0, \ \alpha_0 = \sin^{-1}\left(\sqrt{\frac{2}{3}}\right) \approx 54.5$$

-2.0

. 9/15

NEUTRON STARS

> When neutron stars lose mass (shown by $\delta M > 0$), its radius increases or remains zero

where $\gamma \ge 0$ and parametrises our ignorance of the EOS. Note QSs have $\gamma = -\frac{1}{2}$.

> The fractional change in moment of inertia for a NS system is therefore

 $\frac{\Delta I_{NS}}{I_0} \approx \left(\frac{\delta M}{M_0}\right) \left[\frac{5}{2}\right]$

GWs from magnetar glitches and antiglitches

Garvin Yim

 $\delta R \qquad \delta M$ $rac{R_0}{R_0} = \gamma \frac{1}{M_0}$

$$\left(1+\frac{l}{R_0}\right)^2 \sin^2 \alpha + (2\gamma - 1)$$

NEUTRON STARS

Garvin Yim

GWs from magnetar glitches and antiglitches

GRAVITATIONAL WAVES

- moment \rightarrow gravitational wave radiation
- > The moment of inertia tensor changes but since angular momentum is conserved, the angular velocity vector must evolve \rightarrow <u>biaxial precession</u>
- Gravitational wave luminosity and torque calculated using quadrupole formulae

$$\dot{E}_{GW} = \frac{8}{5} \frac{G}{c^5} M_0^2 R_0^4 \Omega^6 \left(\frac{\delta M}{M_0}\right)^2 \left(1 + \frac{l}{R_0}\right)^4 \sin^2 \alpha \left[\cos^2 \alpha + 16\sin^2 \alpha\right]$$
$$\dot{J}_{GW} = \frac{8}{5} \frac{G}{c^5} M_0^2 R_0^4 \Omega^5 \left(\frac{\delta M}{M_0}\right)^2 \left(1 + \frac{l}{R_0}\right)^4 \sin^2 \alpha \left[\cos^2 \alpha + 16\sin^2 \alpha\right]$$

Garvin Yim

GWs from magnetar glitches and antiglitches

> The ejecta held above the magnetic poles causes a time-varying mass quadrupole

$$\dot{E}_{GW} = \Omega \dot{J}_{GW}$$

PROPERTIES OF GRAVITATIONAL WAVES

Garvin Yim

► Gravitational waves are emitted at $f_{GW} \approx \nu$ and $f_{GW} \approx 2\nu$ for a duration equal to the time between the glitch/antiglitch event and the onset of pulsed radio emission

- > $T_{GW} \sim 4$ d for the SGR 1935+2154 antiglitch
- ► Most relevant GW detectors would be future space-based detectors, especially DECIGO and Big Bang Observer (recall ≈ 0.308 Hz for SGR 1935+2154)

GWs from magnetar glitches and antiglitches

DETECTABILITY OF GRAVITATIONAL WAVES

CONCLUSIONS AND FUTURE STEPS

- gravitational waves
- detectors so long as the magnetar is one (or a combination) of the following:
 - Sufficiently nearby
 - Rotating fast enough
 - Exhibits a large enough glitch/antiglitch
 - antiglitches
- ► Future steps: relax assumptions of point masses, re-do calculation using realistic EOSs, incorporate FRB production into the model

Garvin Yim

> Created a simple model to simultaneously explain glitches and antiglitches which is testable with

Gravitational waves from the trapped ejecta model are detectable with future space-based

• The combination of (α, l) is sufficiently close to the boundary line that separates glitches and

EXTRA SLIDES – YOUNES ET AL. (2023)

Garvin Yim

GWs from magnetar glitches and antiglitches

a

Phase (cycles)

E1/15

EXTRA SLIDES – YOUNES ET AL. (2023)

Timeline

- ➤ Day -38 28th August 2020 No detection of pulsed radio emission by FAST
- ► Day 0 5th October 2020 (±1 day) Anti-glitch
- ➤ Day 3 8th October 2020, 02:23 UTC 3 FRBs
- ➤ Day 3/4 8th/9th October 2020 Pulsed radio emission observed by FAST
- ➤ Day 24 29th October 2020 Last FAST observation of pulsed radio emission

E2/15

EXTRA SLIDES – YOUNES ET AL. (2023)

- Suggested an "ephemeral wind" as the reason for the antiglitch
- > The strong wind "combs out the magnetic field lines" and the wind carries away angular momentum from the system δт $\frac{1}{M} \sim - \frac{1}{M}$
- > For a wind lasting 10 hours, they found $\delta m \sim 10^{-10} M$ and for a wind lasting a few minutes, $\delta m \sim 10^{-6} M$
- > The high opacity conditions during the wind prevents strong electric potential gaps, curvature radiation and electron-positron pair production
- Combing of the magnetic field lines may temporarily favour conditions for FRB production and pulsed radio emission

Garvin Yim

GWs from magnetar glitches and antiglitches

$$\frac{P^2}{(\delta t)^2} \frac{M^2 c^4}{B_p^2 R^6} \left(\frac{\delta \Omega}{\Omega}\right)^3$$

E3/15

EXTRA SLIDES – GE ET AL. (SUBMITTED)

- ► Glitch observed on 25th April 2020 $\frac{\Delta \nu}{--} = 6.4 \times 10^{-5}$
- ► FRB 200428 detected 3 days after glitch, possibly more
- Change in pulse profile and X-ray burst observed coincident with FRB
- Large change in spin-down rate $\frac{\Delta \dot{\nu}}{\dot{\mu}} = -4.4$
- ► Glitch recovery modelled with Q = 0.13
- \blacktriangleright Fitting may be unreliable as there was no prior data for ~900 d

Garvin Yim

E4/15

EXTRA SLIDES – QUARK STARS

Garvin Yim

GWs from magnetar glitches and antiglitches

 10^{4}

Boundary given by

$$\alpha = \sin^{-1} \left(\sqrt{\frac{2}{3}} \left(1 + \frac{l}{R_0} \right)^{-1} \right)$$

For
$$\frac{l}{R_0} \to 0$$
, $\alpha_0 = \sin^{-1}\left(\sqrt{\frac{2}{3}}\right) \approx 54$

E5/15

EXTRA SLIDES – NEUTRON STARS

boundary determined by

 $\sin^2 \alpha$

- For a polytrope, $P = \kappa \rho^{\Gamma} = \kappa \rho^{1+\frac{1}{n}}$ where Γ is the adiabatic index and *n* is the polytropic index

$$\gamma = \frac{n-1}{3-n} = \frac{2-\Gamma}{3\Gamma-4}$$

Garvin Yim

GWs from magnetar glitches and antiglitches

> Again, the sign of the square brackets tells us if we get a glitch or antiglitch with the

$$=\frac{\frac{2}{5}-\frac{4}{5}\gamma}{\left(1+\frac{l}{R_0}\right)^2}$$

but $\sin^2 \alpha$ must be bound between 0 and 1, which leads to the condition $0 < \gamma < \frac{1}{2}$.

EXTRA SLIDES – POLYTROPIC EQUATION OF STATE

> As a first approximation, we can use a polytropic EOS in the model

Combine hydrostatic equilibrium with Poisson's equation (with a polytropic EOS) to get the Lane-Emden equation

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n$$

> With appropriate boundary conditions, one can solve for $\theta = \theta(\xi)$

Garvin Yim

GWs from magnetar glitches and antiglitches

- $P = P(\rho) \rightarrow P = \kappa \rho^{\Gamma} = \kappa \rho^{1+\frac{1}{n}}$ where Γ is the adiabatic index and *n* is the polytropic index

where
$$\xi = \frac{r}{a}$$
 and $\theta^n = \frac{\rho}{\rho_{centre}}$

- > At $\xi = \xi_1$, the density goes to zero so $\theta(\xi_1) = 0$ which gives us the NS radius, $R = a\xi_1$

E7/15

EXTRA SLIDES – POLYTROPIC EQUATION OF STATE

The mass of a NS can be found simply from

 \blacktriangleright Converting to the dimensionless variables ξ and θ , one can utilise the Lane-Emden equation to carry out the integration which results in

M =

$$M = -4\pi \left[\frac{(n+1)\kappa}{4\pi G}\right]^{\frac{3}{2}} \rho_{centre}^{\frac{3-n}{2n}} \xi_1^2 \frac{d\theta}{d\xi} (\xi_1)$$

The radius is easily obtained from

$$R = a\xi_1 = \left[\frac{(n+1)\kappa}{4\pi G}\right]^{\frac{1}{2}} \rho_{centre}^{\frac{1-n}{2n}} \xi_1$$

GWs from magnetar glitches and antiglitches

Garvin Yim

$$4\pi \int_{0}^{R} r^{2} \rho dr$$

E8/15

EXTRA SLIDES - POLYTROPIC EQUATION OF STATE

► Eliminating the central mass density, we get the mass-radius relation for polytropes

$$M = -4\pi R^{\frac{3-n}{1-n}} \left[\frac{(n+1)\kappa}{4\pi G} \right]^{-\frac{n}{1-n}} \xi_1^{-\frac{1+n}{1-n}} \frac{d\theta}{d\xi}(\xi_1)$$

▶ The important point is that $M \propto R^{\frac{3-n}{1-n}}$,

> This relation allows us to calculate γ for polytropes

e.g. for
$$n = \frac{3}{2}$$
, we get $M \propto \frac{1}{R^3}$