First Multi-messenger Continuous Gravitational-Wave Workshop, NIKHEF Amsterdam

Continuous Gravitational Waves from Galactic Neutron Stars:

Demography, Detectability and Prospects.

G. Pagliaro, M.A. Papa, J. Ming, J. Lian, D. Tsuna, C. Maraston, D. Thomas

Arxiv:2303.04714, Accepted on ApJ.

Contents

Motivation for this work

II.

I.

Approach description and main results

III.

Conclusions

MMCW 2023

Motivation

G. Pagliaro

MMCW 2023

The work in a nutshell

- o From remnants to mature NSs
 - Dynamical evolution in the Galaxy
 - Spin evolution due to spin-down torques (EM+GW)
- o Detectability assessment
 - Astrophysical characteristics of detectable sources
 - Parameter space of interest

The work in a nutshell

- o From remnants to mature NSs
 - Dynamical evolution in the Galaxy
 - Spin evolution due to spin-down

REMNANT

torques (EM+GW)

o Detectability assessment

- Astrophysical characteristics of detectable sources
- Parameter space of interest

What mostly affects presenttime spin frequency:

MAGNETIC FIELDS

BIRTH SPIN FREQUENCY

Spin evolution: two main families of models

AGNOSTIC

Flat-in-log priors:

• B $\in [10^{10}, 10^{15}]$ G, no decay

SPIN AT BIRTH

MMCW 2023

- $f_0 \in [2, 300]$ Hz (Camelio et Al. 2016)
- $f_0 \in [2, 1200]$ Hz (Haskell et Al. 2018)

EMPIRICAL

informed priors consistent with: Popov et Al. (2010), Viganò et Al.(2013), Gullón et Al. (2015)

• $p(\log_{10} \text{B/G}) = \mathcal{N}(13, 0.8)$ decay time-scale $\tau = 10^6 \text{yr}$

SPIN AT BIRTH

7

- $p(P_0/ms) = \mathcal{N}(300, 200)$
- $p(P_0/ms) = \mathcal{U}(0.8, 500)$ (Gullón et Al. 2014, 2015) (Gonthier et Al. 2004)

Spin evolution: two main families of models

AGNOSTIC

Flat-in-log priors:

• $B \in [10^{10}, 10^{15}]G$, no decay

SPIN AT BIRTH

MMCW 2023

- $f_0 \in [2, 300]$ Hz (Camelio et Al. 2016)
- $f_0 \in [2, 1200]$ Hz (Haskell et Al. 2018)

EMPIRICAL

informed priors consistent with: Popov et Al. (2010), Viganò et Al.(2013), Gullón et Al. (2015)

• $p(\log_{10} \text{B/G}) = \mathcal{N}(13, 0.8)$ decay time-scale $\tau = 10^6 \text{yr}$

SPIN AT BIRTH

- $p(P_0/ms) = \mathcal{N}(300, 200)$
- $p(P_0/ms) = \mathcal{U}(0.8, 500)$ (Gullón et Al. 2014, 2015) (Gonthier et Al. 2004)

and finally...ellipticity

Scenario 1: MAGNETIC FIELD INDUCED

Mastrano et Al. (2011):

$$\varepsilon(B) \propto B^2 \left(1 \ - \ \frac{0.4}{\Lambda}\right)$$

 $\Lambda = 0.9$ Ciolfi et Al. (2010), Lasky et Al. (2012), Lander & Jones (2009), Lander et Al. (2021)

 $\Lambda = 0.1$ Braithwaite (2009), Akgün et Al. (2013), Ciolfi & Rezzolla (2013)

Scenario 2: OTHER

Origin of deformation not specified

 $p(\log \varepsilon) = \mathcal{U}(\varepsilon_{min}, \varepsilon_{max})$

•
$$\varepsilon_{min} = \varepsilon(B, \Lambda = 0.9)$$

$$\varepsilon_{max} = 10^{-5}$$

(Ushomirsky et Al. 2000, Haskell et Al. 2006,
Horowitz & Kadau 2009, Morales & Horowitz 2022)

MMCW 2023

Main results

		average no. detectable sources	
		agnostic	empirical
ollipticity	magnetic induced	< 0.01	< 0.01
empticity	other	≈ 1.4 − 3.6	0.01

		average no. detectable sources	
	agnostic empiric		empirical
ellipticity	magnetic induced	< 0.01	< 0.01
	other	≈ 1.4 - 3.6	0.01

Current sensitivity: parameter space

Current sensitivity: parameter space

Current sensitivity: parameter space

MMCW 2023

	NUMBER OF SOURCES IN BAND		
	$N_{\mathrm{f_{GW}}} \mathop{>}\limits_{(\%)} 20~\mathrm{Hz}$	$N_{f_{GW}} > 5 Hz$ (%)	
AGNOSTIC	0.14 - 0.16 %	2.9 - 3 %	
EMPIRICAL	0.22 - 0.47 %	6.9 - 8.7 %	

MMCW 2023

	NUMBER OF SOURCES IN BAND		
	$N_{\mathrm{f_{GW}}} > 20~\mathrm{Hz}$ (%)	$N_{f_{GW}} > 5 Hz$ (%)	
AGNOSTIC	0.14 - 0.16 %	2.9 - 3 %	
EMPIRICAL	0.22 - 0.47 %	6.9 - 8.7 %	

		average no. detectable sources	
	agnostic empiri		empirical
ellipticity	magnetic induced	< 0.01	< 0.01
	other	≈ 350 - <u>525</u>	≈2-5

low	mid	high	TOTAL
[20, 100] Hz	[100, 500] Hz	[500, 2400] Hz	
	now		
0.12	3.08	0.42	3.62
	$2 \times$ more sensitive		
0.69	11.26	1.37	13.32
	$3 \times$ more sensitive		
1.79	23.23	2.5	27.52
	$10 \times$ more sensitive		
33.77	170.12	9.74	213.63
	3rd generation detectors		
[5, 100] Hz	[100, 500] Hz	[500, 2500] Hz	TOTAL
193.2	318.02	15.15	526.37

EMPIRICAL MODELS BECOME DETECTABLE!

MMCW 2023

MMCW 2023

MMCW 2023

Conclusions

- Detection is limited to stars with deformations not just due to magnetic field and is (currently) far from guaranteed
- Currently detectable sources show a strong correlation between magnetic field and ellipticity: the larger the magnetic field, the larger the ellipticity needed for current detectability
- For some of our models, 3rd generation detectors are able to detect few hundreds more sources than current ones
- "Empirical" models become detectable with 3rd gen. detectors
- For these, it is of fundamental importance to account for the GW-spindown contribution to avoid to overestimate the number of detectable sources
- Feeding our results to optimisation frameworks will help us in wisely choosing the parameter space portion to survey

Table 3. Expected number of currently detectable neutron stars, computed as the average $\pm 1\sigma$ over the 100 realisations performed. The last column shows the *percentage probed* with respect to the total number of sources in-band for each model (second column of Tab. 2). The remaining models, here indicated generally as A1 and E1, give no detectable signal in any of the realisations.

Model	\overline{n}	% of <i>in-band</i>
$A2_{low}$	1.4 ± 1.16	0.0003
$A2_{high}$	3.62 ± 1.91	0.0007
$\mathrm{E2}_{\mathrm{norm}}$	0.01 ± 0.1	$\approx 10^{-6}$
$\mathrm{E2}_{\mathrm{unif}}$	0.01 ± 0.1	$\approx 10^{-6}$
A1	< 0.01	—
E1	< 0.01	—

Table 7. Average number of detectable sources \overline{n} under different assumptions on the proportions of the number of binary-toisolated neutron stars. In the mix-model we have assumed 42% isolated objects and 58% in binaries, consistent with the ATNF MSP population. We recall that the total population is 60,000 objects.

	\overline{n}		
	(all binary)	(all isolated)	(mix)
now	< 0.01	0.01 ± 0.1	< 0.01
CE	0.18 ± 0.38	5.8 ± 2.62	3.44
\mathbf{ET}	0.09 ± 0.29	4.76 ± 2.32	2.8

MMCW 2023

$$\dot{\nu} = -\frac{32\pi^3 R^6}{3Ic^3\mu_0} \left(B(t)\sin\chi\right)^2 \ \nu^3 - \frac{512\pi^4 GI}{5c^5}\varepsilon^2\nu^5.$$

MMCW 2023

