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Fast forward 414 years ...
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Continuous Gravitational Waves from
Neutron Stars Mountains
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Interesting Range of Ellipticities

Emar = fEW X 10~° (for instance, see Ushomirsky et. al. 2000, Gittins et. al. 2021, Morales et. al. 2022)
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Interesting Range of Ellipticities

® Results
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Analogies from Solar System Planets and
Moons



1. Diversity




2. Large Scale Asymmetries
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2. Large Scale Asymmetries

THE TOPOGRAPHY OF MARS BY THE MARS ORBITER LASER ALTIMETER (MOLA)
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4. Anisotropies
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4. Anisotropies
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4. Anisotropies

Shuji Ogata and Setsuo Ichimaru, Phys. Rev. A 42 (1990) 4867.



4. Anisotropies
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4. Anisotropies
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M. E. Caplan and C. J. Horowitz, Colloquium: Astromaterial science
and nuclear pasta, Rev. Mod. Phys. 89, 041002 (2017).



4. Anisotropies

(b) s (c) . d)

LI n

(€)

M. E. Caplan and C. J. Horowitz, Colloquium: Astromaterial science
and nuclear pasta, Rev. Mod. Phys. 89, 041002 (2017).



4. Anisotropies

FIG. 1. Cut through the equatorial plane of a rotating star.
The crust extends from Rp to R and is slightly anisotropic in
the X direction.



4. Anisotropies

FIG. 1. Cut through the equatorial plane of a rotating star.
The crust extends from Rp to R and is slightly anisotropic in
the X direction.



4. Anisotropies

FIG. 1. Cut through the equatorial plane of a rotating star.
The crust extends from Rp to R and is slightly anisotropic in
the X direction.



4. Anisotropies
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FIG. 2. Breaking index n (solid black curve) and ellipticity
€ (dashed red curve) vs rotational frequency €2 assuming the
crust froze while the star was rotating at 2o = 300 Hz.



4. Anisotropies
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4. Anisotropies
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4. Anisotropies
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Conclusions

Detectable NS mountains are non-axisymmetrical, large scale, and long
lived deformations on NS crust

The maximum ellipticity for a canonical NS is a few times 10

Solar System bodies and their mountains give us ‘ground truths’ that
support the existence of detectable neutron star mountains

The braking index for gravitational radiation of mountains is not
necessairly 5

Macroscopic anisotropy on the crust of rapidly spinning NS can give rise
to interesting ellipticities that can explain both accretion torque balance
and mimimum ellipticity, and that can be detected in the near future



