

A novel neural-network architecture for continuous gravitational waves

Prasanna Joshi, Reinhard Prix Date: July 11, 2023

https://arxiv.org/abs/2305.01057

Introduction

$$h_0 = \frac{16\pi^2 G}{c^4} \frac{I_{zz} v^2}{d} \varepsilon,$$

$$\mathcal{D} \equiv rac{\sqrt{S_{
m n}}}{h_0}$$

Credit: Greg Ashton

2

Targeted Search test cases

We trained **10** separate networks, one for each of the **10** targeted search cases.

- Freq (Hz): 20, 100, 200, 500, 1000
- Spindown: -10^{-10} Hz/s
- Skypos: Sky-A (narrow), Sky-B (widest)
- Time-span: 10 days

Sensitivity Depth for 90% detection probability:

 $\begin{aligned} \mathcal{D}_{\rm Sky-A}^{90\%} &\approx 86.2 \, / \sqrt{\rm Hz}, \\ \mathcal{D}_{\rm Sky-B}^{90\%} &\approx 81.8 \, / \sqrt{\rm Hz}. \end{aligned}$

Frequency [Hz] Bandwi	Bandwidth [mHz]	
	Sky-A	Sky-B	
20	0.09	0.45	
100	0.16	1.94	
200	0.38	3.80	
500	1.06	9.38	
1000	2.19	18.69	

Inspiration from networks used for Image Recognition

- Convolutional layers
- Small kernel-sizes
- Very deep networks containing ~100 layers

Applied in:

<u>C. Dreissigacker, et.al, Phys. Rev. D 100, 044009 (2019)</u> <u>C. Dreissigacker, et.al, Phys. Rev. D 102, 022005 (2020)</u>

Credit: Neural networks and Deep Learning by Andrew Nielsen

Inspiration from networks used for Image Recognition

- Convolutional layers
- Small kernel-sizes
- Very deep networks containing ~100 layers

Our network with design features for continuous-wave search

- Convolutional layers
- Large kernel-sizes
- Shallow network containing only 2 convolutional layers and total 5 layers

Pre-processing the input

Detector time-series

Spectrogram over ten one-day segments

First layer: 1D convolution

- Convolution along the frequency-axis
- Kernel-size = 1x313 bins
- Kernel completely overlaps the widest signal-bandwidth in the one-day segments (3.4 mHz)
- Number of kernels = 64

L1 (Real)

Second layer: 2D convolution

- Kernel-size = 2x40 bins
- "visual field" of kernel overlaps the widest output "track" width over the two-day span
- Number of kernels = 64

L1 (Real)

- Each layer (except final) has ReLU activation function
- Final layer has the softmax activation function
- Inference based on whether network output value crosses a 1% false-alarm threshold

Layer	Output shape
0.3,84	(T, F, C)
Input	(10, 1647, 4)
Conv1D	
Kernel - (1, 313, 2)	(10, 103, 64)
Stride - 16	
Conv2D	
Kernel - (2, 40, 64)	(10, 26, 64)
Stride - $(1, 4)$, <i>, , , ,</i> ,
Flatten	(16640)
Dense	(32)
Output	(1)

Results

Detection Probability (at 1% false-alarm probability) evaluated on a test set

Frequency	Sky-A	Sky-B
20	$89.0^{+0.8}_{-1.2}$	$88.5^{+0.8}_{-1.0}$
100	$87.8^{+0.8}_{-1.1}$	$87.4^{+1.0}_{-1.0}$
200	$89.0^{+0.8}_{-1.0}$	$89.0^{+0.9}_{-1.0}$
500	$88.4^{+0.7}_{-1.0}$	$88.8^{+1.0}_{-0.9}$
1000	$87.6^{+0.8}_{-1.1}$	$87.6^{+1.0}_{-1.2}$

Results

Detection probability (at 1% false-alarm probability) as a function of sensitivity depth of the injected signal

Future Work

- Train deep neural networks to efficiently search for CW signals over a longer time span (upto 1 year)
- Develop wide-parameter space searches for CW signals using deep neural networks
- Train deep neural networks to estimate parameters of continuous-wave signals

Thank you!

Extra Slides

DNN Training

- No. of signals for training = 8192
- No. of signals for validation = 8192
- Loss function: Binary Cross-entropy
- Optimizer: Adam

Results

