LHCb at Nikhef

SAC Visit, 13 April 2023

N.Tuning for the Bfys group

Outline

• Group

- People power
- Funding
- Timeline
- Technology
 - VELO
 - SciFi
 - RTA
 - Upgrade II
- Physics
 - CP violation
 - Rare decays

• Program leader: Marcel Merk + Mara Senghi Soares

People		Output		Funding	MoU	Partners (staff)
Staff	11	Papers	665	LHCb	4.95M€	VU Amsterdam (2)
Postdocs	5	Theses	43	LHCb Upgrade I	3.2 M€	RuG Groningen (1.5+1)
PhD	12	MSc	50	LHCb Upgrade II	~6 M€?	UM Maastricht (3)
						Nikhef Amsterdam(4.5)

Hcb

2022: 1602 members, 96 institutes, 22 countries

https://greybook.cern.ch/experiment/detail?id=LHCB

Group: people

- Groningen: being reinforced
- Maastricht: new Faculty of Science and Engineering

Group: output

Group: output

LHCb Early Career Prize 2022

2022 responsibilities

Deputy project leader VELO, SCIFI, RTA Physics subWG conv TD-B2OC Physics coordinator Physics performance convener Membership comittee chair Speakersbureau deputy chair 2023 responsibilities Data Quality coordinator Deputy project leader VELO Run coordinator Speakersbureau deputy chair

RTA WP convener

LHCb Early Career Prize 2020

Bruch, Lemos Cid, Bertella, Dufour, Dordei (Early Career Chair), D'Argent (Image: CERN)

 $^{-11}$ June, LHCb announced the winners of the 2020 PhD Thesis and Early Career Scientist Awards.

IN LHCb Thesis Awards recognize excellent PhD theses and additional work that have made an exceptional ntribution to LHCb. In parallel, the Early Career Scientist prizes are awarded to recognize outstanding hievements of early career scientists to the benefit of LHCb.

is year's winners of the Thesis prize are Philippe D'Argent (Heidelberg University) and Laurent Dufour likhef/Groningen University. Carlos Abellan Beteta (Zurich), Claudia Bertella (CERN), Daniel Campora (Nikhef), dim Conti (INFN, Milan), Edgar Lemos Cid (Santiago de Compostela), Olli Lupton (Warwick), Mark Smith

End of funding:

- NWO program
- Vici (2x)
- Projectruimte
- Postdoc on Swiss grant

Funding	MoU	
LHCb	4.95M€	9%
LHCb Upgrade I	3.2 M€	7%
LHCb Upgrade II	~6 M€?	~5%?

➢ Worries about long term funding

- All sources above ending
 - from now on depend on *possible future* structural Nikhef funding
 - NWO "ENW groot" requests
 - Physics proposal turned down
 - Technology proposal "Faster" successful (2 PhD, 1 postdoc)
- Stimulate grant requests (risk for strategic choices)
 - Veni & Marie Curie, Vidi, Vici limited...

Decreasing impact on LHCb

Group: funding opportunities

Worries about long term funding

- All sources above ending
 - from now on depend on *possible future* structural Nikhef funding
 - NWO "ENW groot" requests
 - Physics proposal turned down
 - Technology proposal "Faster" successful (2 PhD, 1 postdoc)
- Stimulate grant requests
 - Veni & Marie Curie, Vidi, Vici limited...

Opportunities :

- > National Roadmap (2024) LHC detector investment
- Summit (2024) LHC long term personnel
- ENW-XL (2024) LHCb topical + partners
- Individual grants

Timeline

You are here

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035-	F
			Run III	[Run IV						Ru	n V
LS2						LS3						LS4			
LHCb 4 UPGRA	LHCb 40 MHz $L = 2 x 10^{33}$				LHCb Consolidate			$L = 2 x 10^{33} 50 fb^{-1}$			LHCb UPGRADE II			L=1-2 300	2x10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	= 2 x 10)34	ATLAS Phase	II UPGI	RADE	L	$= 5 \times 10^{-1}$	C) ³⁴				HL-L $L = 5x$.HC ¢10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPGI	RADE							3000) fb-1
Belle I	I	L=3 s	$x \ 10^{35}$			7 ab-1					L = 6 s	c 10 ³⁵	50 0	ab^{-1}	

LHC schedule:

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Technology

Scintillating Fibers

- New technology
- Si strip resolution for lower price

RTA (reconstruction)

- 40 MHz, 400 tracks
- 2-10 GB/s to storage

VELO pixels

- Synergy with Medipix
- Fast track reconstruction

VELO

1) Module design & production

3) Vacuum envelope "RF-Box"

Modules construction at Nikhef

Technicians are "power of Nikhef"

1000

VELO

6

VELO

VELO installation Nikhef committed to help with RF-foil repair

RF-box: "beampipe" between LHC beam and VELO

6

9

RF-box: "beampipe" between LHC beam and VELO

250µm thin foil

- Leak tightness OK
- Further edged at CERN to 150 μm

RF-box: "beampipe" between LHC beam and VELO

250µm thin foil

- Leak tightness OK
- Further edged at CERN to 150 μm

SciFi Tracker 🖌

Nikhef r ponsibilities

Modules; Coldbox Electronics: MANNY SANT

production at Nikhef production and design-Digital part, firmware and controls for SAC -13 Apr 2023 - N. Tuning

60

9

SciFi Tracker

SciFi Tracker

Nikhef technicians prepared frames

ngineers designed d

tal electronics

Nikhef engineers designed and mount cabling

Nikhef engineer developing readout

LHC B F E ef technicians mounting ColdBo

SciFi Tracke

elole

ers designed

Tracker

<70 %

LOW QUALITY

RTA (<u>r</u>eal <u>t</u>ime <u>a</u>nalysis)

(aka: <u>r</u>econstruction, <u>t</u>rigger, <u>a</u>lignment)

- New project, with large Nikhef involvement
- Many open questions (choices)
- Challenging and inviting computing aspects

24

RTA (real time analysis)

RTA (<u>r</u>eal <u>t</u>ime <u>a</u>nalysis)

(aka: <u>r</u>econstruction, <u>t</u>rigger, <u>a</u>lignment)

- Strong involvement
 - Nikhef+VU founding member + management roles
 - HLT1 (framework, algorithms, GPU operations)
 - HLT2 framework (made multi-threaded, selections, persistence)
- Progress in 2022 :

RTA (<u>r</u>eal <u>t</u>ime <u>a</u>nalysis)

(aka: <u>r</u>econstruction, <u>t</u>rigger, <u>a</u>lignment)

- Achievements:
 - HLT1: rate tests to 25-30 MHz (record throughput)
 - HLT2: ~1500 selection lines implemented...
 - Alignment: using new software framework

System

LHCb

State

NOT_READY

READY

READY

RUNNING

RUNNING

RUNNING

RUNNING

RUNNING

LHCb

Sub-System

HV

DCS

DAI

DAQ

RunInfo

TFC

EB

Monitoring

State

RUNNING

- 2

P

£

8

1

- 🔒 \Lambda

Run Info

Run Number: 234160

Run Start Time:

Run Duration:

000:04:48

Nr. Events:

1832622343

Step Nr: To Go:

15-Jun-2022 11:56:42

2021	202	2	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035-	F
			Run III						Run IV						Rui	n V
LS2							LS3						LS4			
LHCb 4 UPGRA	O MHz $L = 2 x 10^{33}$)33	LHCb Consolidate			$L = 2 x 10^{33} 50 fb^{-1}$			LHCb UPGRADE II			$ L = 1 - 2x 10^{34} \\ 300 fb^{-1} $		
ATLAS Phase I	Upgr		L	$= 2 \times 10$)34	ATLAS Phase II UPGRADE			L L	$\mathbf{H} - \mathbf{L} \mathbf{H} 0$ $= 5 \times 10$) 34				HL-L $L = 5x$	HC ¢10 ³⁴
CMS Phase I	Upgr			300 fb ⁻¹		CMS Phase II UPGRADE									3000) fb-1
Belle I	I		L=3 :	x 10 ³⁵		7 ab-1						L = 6	x 10 ³⁵	50 c	<i>ab-1</i>	

LHC schedule:

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Upgrade II at Nikhef

• Faster

• Improved time resolutions achieved with variety of designs

30

Physics

- ➤ At Nikhef
- CP violation

 - 2) γ
- Rare decays
 - 3) Very rare decays
 - 4) Lepton flavour non-universality
- Long-living particles
- Other recent LHCb highlights:
 - New 'exotic' hadrons: Tetraquark and pentaquark
 - W-mass
 - D⁰ mass difference
 - anti-p production

Physics at Nikhef: CP violation

•
$$\gamma$$
 with $B_s^0 \rightarrow D_s^+ K^-$

- and mass difference Δm_s

 $\phi_s^{this} = XXX \pm 0.021(stat.) \pm 0.0068(syst.)$ [rad]

Physics at Nikhef: CP violation

• γ with $B_s^0 \rightarrow D_s K$

– and mass difference Δm_s

$\Delta m_s = 17.7656 \pm 0.0057 \,\mathrm{ps}^{-1}$

Hot topic: *Flavour Anomalies*

Physics at Nikhef: Rare decays

Physics

➤ At Nikhef

- CP violation

 - 2) γ
- Rare decays
 - 3) Very rare decays
 - 4) Lepton flavour non-universality
- Long-living particles

Other recent LHCb highlights:

- New 'exotic' hadrons: Tetraquark and pentaquark
- W-mass
- D⁰ mass difference
- anti-p production

Other LHCb highlights

Outlook: Sensitive to highest mass scale!

Discussion: VELO Vacuum incident

VELO vacuum incident: 10 Jan 2023

- Loss of control of the protection system during VELO warm up (in Ne)
- Relay failed and damaged a power supply, leading to multiple equipment failures and a pumping action on the primary volume
- Pressure differential of 200 mb built up between the two volumes, whereas the foils are designed to withstand 10 mb only

VELO Vacuum Incident: Analysis and Recovery

- As a result of the incident, the RF foils are deformed
- The foils are inside the vacuum tank
 - they can be partially visualised through a viewing port
 - the deformation is simulated, and benchmarked against measurements on a 1/2 scale box

- The analysis shows a plastic deformation of the foils of up to 14 mm
 - replacing the foils is mandatory
- Priority for LHCb is to preserve VELO undamaged
- This is a significant intervention inside the vacuum tank
 - > planning for next shutdown is currently under study
- Intervention happens in the next YETS: LHCb will run in 2023 with the VELO partially open

VELO Vacuum Incident: Next steps

Baseline:

- Operate with damaged foil in '23
 - VELO Closure to 10mm aperture at best
 - Aperture and impedance expected acceptable for machine
 - Replace foil in EYETS '23/'24
- Physics programme in 2023 will be significantly affected
- > Commissioning of Upgrade I systems will proceed as planned

Important checkpoints towards TS1 in June 2023:

- 1) Tomography (probably with 450 GeV, incl. SMOG1 Ar)
- 2) Inspect motion system without beam
- 3) Decide on VELO position
- 4) Determine maximal radiation dose \rightarrow luminosity, pile-up

LHCb-FIGURE-2023-001

Backup

		First be	Stable ams		May 1200 bunches Jun						Jul			
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26	
Мо	3	Easter 10	17	24	1st May 1	8	↓ 15	22	Whitsun 29	5	12	19	VdM 26	
Tu					Scrubbing								program	
We	Re-com	missioning						2 WBC				TS1	t Spa	
Th	with	n beam					Ascension	0.Radi					adMa	
Fr	G. Fri.				Interleaved	=		- SPS -			MD 1		SHIR	
Sa			*	in	& ntensity ramp u	p						T2?	SP 1	
Su														

Shift emphasis towards global commissioning

Steps to understand mechanics

Fully Open Tomography at 450 GeV (if aperture+impedance allows)

One half Open Inspect Motion System (if mechanically possible)

± 29 mm + 29 mm ± 10-15 mm

Partially Open Data taking (if motion system allows)

The RF box team at Nikhef

Berend

Johan

Willem

Tjeerd

+ Krista + Jesse + Kazu LHCb for SAC - 13 Apr 2020 - N. Martin

Physics at Nikhef: Long-living particles

Intermezzo: Effective couplings

Effective coupling can be of various "kinds"

Ca

 C_{10}

- Vector coupling:
- Axial coupling:
- Left-handed coupling (V-A): C₉-C₁₀
- Right-handed (to quarks): C_9 ', C_{10} ', ...

• Analog: *Flavour-changing neutral current*

Intermezzo: Effective couplings

• C_7 (photon), C_9 (vector) and C_{10} (axial) couplings hide everywhere:

$$\begin{split} A_{\perp}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} + C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} + C_{10}^{efff} \end{pmatrix} \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{eff} \end{pmatrix} + C_{7}^{efff} \end{pmatrix} T_{1}(q^{2})] \\ A_{\parallel}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} - C_{10}^{efff} \end{pmatrix} \frac{A_{1}(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{efff} \end{pmatrix} T_{2}(q^{2})] \\ A_{0}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} = \begin{pmatrix} C_{10}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{L}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\ &= \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{2} - A_{\parallel}^{L2} \\$$

Coherent pattern

Coherent pattern

• Charm loop effects could also cause a shift in C₉

 $b \to s \mu \mu$

From: Martino Borsato, Flavour Anomaly Workshop, 20 Oct 2021, https://indico.cern.ch/event/1055780/

Group members

³³ Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

Team Leader: Niels Tuning

Members: Aleksandra Snoch, Alessio Sclocco, Alfred Schimmel, Alice Biolchini, Antonio Pellegrino, Antonius Damen, Arseniy Vitkovskiy, Berend Munneke, Bernardus Van Werkhoven, Cristina Sanchez Gras, Daan Jasper Oppenhuis, Daniel Magdalinski, David Groep, Eddy Jans, Edward Berbee, Ella Godiva Noomen, Emmy Gabriel, Erno Roeland, Espen De Wit, Frank Kayzel, Fred Bulten, Freek Sanders, Gijs Van Den Oord, Gino Timothy Hoft, Hans Band, Igor Kostiuk, Isis Elektra Knijff, Jan de Boer, Jeffrey Alan Templon, Jordy Sebastiaan Butter, Karel Nijhuis, Karol Kacper Poplawski, Kazuyoshi Akiba, Kevin Heijhoff, Krista De Roo, Lara Veldt, Lex Marinus Greeven, Lukas Ceelie, Luuk Van Nieuwland, Maarten van Veghel, Marcel Merk⁸³, Marco Kraan, Maria Domenica Galati, Martijn van Overbeek, Martinus van Beuzekom, Maurice Geijsen, Niels Tuning, Nina Sabine Oskam, Omer Can Akgun, Oscar van Petten, Patrick Koppenburg, Paul Willem Van De Kraats, Pieter Van Braam Van Vloten, Robbert Cornell Walet, Robbert Erik Geertsema, Robin Schmeitz, Roel Aaij, Rudolf Kluit, Suvayu Ali, Tjeerd Ketel, Valeriia Lukashenko⁵⁴, Wilco Vink, Wouter Hulsbergen

⁸³ Also at Universiteit Maastricht, Maastricht, Netherlands

⁵⁴ Also at Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

³⁴ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands

Team Leader: Gerhard Raven Members: Andrii Usachov, Gerhard Raven, Mara Senghi Soares, Suzanne Klaver

⁸² Van Swinderen Institute, University of Groningen, Groningen, Netherlands

Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

Team Leader: Kristof De Bruyn

Members: Andrej Sarnatskiy, Aylan Kaya, Daniele Provenzano, Kristof De Bruyn, Mick Mulder, Nicholas Benjamin Sundstrom, Thijs Rozeboom

⁸³ Universiteit Maastricht, Maastricht, Netherlands

Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

Team Leader: Jacco De Vries

Members: Carolin Malmendier , Carolina Bolognani , Christopher James Pawley , Daniel Hugo Campora Perez , Davide Nicotra , Domenica Dibenedetto , Gerco Onderwater , Jacco de Vries , Jan Hemink , Kimberley Vos , Kurt Driessens , Miriam Lucio Martinez , Valentin Kotolup , Vlado Pehar , Zacharias Leonidakis