

Sequential simulation-based inference for strong gravitational lensing The importance of combining different inference strategies

Noemi Anau Montel

University of Amsterdam, GRAPPA Institute n.anaumontel@uva.nl

UNIVERSITY OF AMSTERDAM

GRavitation AstroParticle Physics Amsterdam

3-5 July 2023 • Amsterdam Science Park

Celebrating 10 years of GRavitation and AstroParticle Physics Amsterdam

Strong gravitational lensing **Diverse and complex observations**

 \vec{z}_{lens}

Strong gravitational lensing $\sim O(10^5)$ system in the near future (Collet 2015)

Vera C. Rubin Observatory Large Synoptic Sky Survey

Euclid

Extremely Large Telescope

Strong gravitational lensing A great inference challenge

$\frac{p(|z)}{p(|z)}p(z)$

Strong gravitational lensing A great inference challenge

Zlight

$\frac{p(|z)}{p(|z)}p(z)$

$\mathbf{z}_{sub} = \{(x, y, z, M)_1, \dots, (x, y, z, M)_N\}$

Truncated Marginal Neural Ratio Estimation

A sequential simulation-based inference technique

For more information:

- <u>Hermans et al. (2019)</u>
- Miller et al. (2020)
- Miller et al. (2021)
- <u>swyft</u> package

SBI: Can handle complex forward models

It is possible to improve the realism of the model without dealing with an *intractable* likelihood, only the ability to sample is needed.

 $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$

Neural Ratio Estimation

$$r(\mathbf{x}; \mathbf{z}) = \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} = \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}$$

NRE rephrases posterior inference into a **binary classification problem** and then solves it by training a neural network on simulated data.

Marginal inference

Cherry-picking what we are interested in

Scalability with dimensionality

Training data

TMNRE for strong gravitational lensing Reducing data variance

aining data

È

Target mock observation

Round 1

arxiv:2205.09126

Prior truncation schemes

Parameter-wise truncation, based on the corresponding 1D marginal ratio.

$$\Gamma_i^{(R)} = \{ z_i \in \mathbb{R} \mid r_R(z_i; \mathbf{X}) > \epsilon \}$$

As a result, we obtain a truncation region that has the shape of a **hyper-rectangular box**.

$$\tilde{p}_{R}(\mathbf{z}) = \frac{1}{Z} \mathbb{I}(z_{1} \in \Gamma_{1}^{(R-1)}) \times \cdots \times \mathbb{I}(z_{N} \in \Gamma_{N}^{(R-1)}) p(\mathbf{z})$$

Block-wise truncation, to separate the parameters in blocks depending on what dominates data variance.

$$\Gamma^{(R)} = \{ \mathbf{z} \in \mathbb{R}^N \mid r_R(\mathbf{z}; \mathbf{x}) > \epsilon \}$$

The **complex truncation region** is defined through a **hard likelihood constraint**. Sampling from this region is possible with nested sampling techniques (e.g. slice-sampling).

$$\tilde{p}_{R}(\mathbf{z}) = \frac{1}{Z} \mathbb{I}(\mathbf{z} \in \Gamma^{(R-1)}) p(\mathbf{z})$$

$$z_{2}$$

 z_1

Ζ

TMNRE applications to strong gravitational lensing

- 1. Needle in the haystack problem Subhalo's parameters inference
- 2. Hierarchical inference: distilling information from a dataset Substructure population parameters inference from lensing images
- 3. Block-wise truncation scheme for macromodel correlations Deblending lens light and source light
- 4. Image reconstruction task

Background source flux variations reconstruction

1. Subhalo's parameters inference Model (~ $O(10^3)$ parameters) Truncation strategy

 $\mathbf{z}_{\text{source}} = \{x, y, \phi, q, r_{e}, I_{e}, n\}$ **Z**_{macro} $\mathbf{z}_{\text{lens}} = \{x, y, \phi, q, r_{\text{Ein}}, \gamma, \gamma_1, \gamma_2\}$ $\mathbf{z}_{sub} = \{(x, y, z, M)_1, \dots, (x, y, z, M)_N\}$ $\boldsymbol{\theta}_{\mathrm{sub}}$ $\mathbf{z}_{\text{sub,heavy}} = (x, y, z, M_{>M_i})_{\text{heavy}}$ arxiv:2209.09918

Box truncation on z_{macro} and $z_{sub,heavy}$

1. Subhalo's parameters inference TMNRE reproduces analytically-calculable posteriors

arxiv:2209.09918

1. Subhalo's parameters inference Effect of the macromodel on subhalo measurements

arxiv:2209.09918

1. Subhalo's parameters inference Effect of the perturber population on subhalo measurements

arxiv:2209.09918

2. Hierarchical inference for substructure population parameter

Model (~ $O(10^3)$ parameters)

arxiv:2205.09126

Truncation strategy

Box truncation on z_{macro}

2. Hierarchical inference Dark matter is encoded in the properties of small-scale halos

<u>Bœhm et al. (2014)</u>

2. Hierarchical inference Dark matter is encoded in the properties of small-scale halos

2. Hierarchical inference Dark matter is encoded in the properties of small-scale halos

2. Hierarchical inference with NRE

arxiv:2205.09126

Distilling information from a dataset through neural embedding

3. Macromodel correlations

Model (25 parameters)

Truncation strategy

Correlated truncation on \mathbf{z}_{macro} and \mathbf{z}_{sub}

3. Macromodel correlations How to reduce data variance when parameters are correlated?

Targeted simulations

Box truncation

Correlated truncation

Substructure inference

3. Macromodel correlations Autoregressive NRE vs "vanilla" NRE

Fixed simulation budget and number of weights

arxiv:2307.xxxx

Autoregressive models turns the estimation of a **N-dimensional joint** density into the estimation of **N 1-dimensional conditional** densities:

 $p(\mathbf{z} | \mathbf{x}) = p(z_1 | \mathbf{x}) \prod_{i=2}^{N} p(z_i | \mathbf{x}, z_{1:i-1})$

Towards analysing lensing data with ML JVAS B1938+666: a case study

PRELI

Targeted training data

4. Image reconstruction with TMNRE

Model (~ $O(10^3)$ parameters)

Truncation strategy

- Full correlation on z_{GRF} (Gaussian approximation)
- Box truncation on Z_{macro}

4. Image reconstruction with TMNRE **Towards including source variations**

Target observation

Prior samples

We train the joined likelihood:

Posterior samples after 1 round

Observation

Other TMNRE applications

Gravitational Waves

Uddipta Bhardwaj

arXiv:2304.02035

James Alvey

Stellar Streams

James Alvey

Supernovae la arXiv:2209.06733

Konstantin Karchev

Point sources arXiv:2211.04291

Noemi Anau Montel

arXiv:2304.02032

Mathis Gerdes

Cosmology

Guillermo Franco Abellan Oleg Savchenko

Algorithms development arXiv:2210.06170

Benjamin Miller

Large-scale structure arXiv:2206.11312

Androniki Dimitriou

Camila Correa

Conclusions

- Strong lensing images analyses **results**, in general, depend on data cuts, model approximations, analysis methods.
- With TMNRE we hope to combine all known sources of uncertainties in the analysis and draw coherent conclusions based on the *full* model and *all* data.
- This is possible by assembling different inference strategies (neural networks and truncation schemes) to coherently perform distinct analysis tasks on the same data.

Image reconstruction

Density field reconstruction

Object detection

Population level parameter inference

Light emissions deblending

Hierarchical inference

All marginalizing over other components uncertainties with uncertainties

Conclusions

- Strong lensing images analyses results, in general, depend on data cuts, model approximations, analysis methods.
- With **TMNRE** we hope to combine all known sources of uncertainties in the analysis and draw coherent conclusions based on the *full* model and *all* data.
- This is possible by assembling different inference strategies (neural networks and truncation schemes) to coherently perform distinct analysis tasks on the same data.

Thanks for listening!

