DEEP UNDERGROUND NEUTRINO EXPERIMENT

Studying neutrinos with DUNE

Vikas Gupta UvA/Nikhef

03/07/2023 | GRAPPA10

Neutrino oscillation is a window to Beyond Standard Model Physics but difficult to study

 $\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_i \ (\alpha = e, \mu, \tau)$ Neutrino oscillation > three flavor (ν_e, ν_μ, ν_τ) and three mass (ν_1, ν_2, ν_3) eigenstates related via the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix $P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,i} U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \exp\left[-i\frac{\Delta m_{ji}^2}{2}\frac{L}{E}\right]$ non-zero neutrino mass > difficult to study due to extremely low **Oscillation** probability interaction cross sections (~ 10^{-44} cm²) from flavor α to β

DUNE will measure $\nu_{\mu}/\bar{\nu}_{\mu}$ beam oscillation to $\nu_{e}/\bar{\nu}_{e}$ using 1300 km baseline

03/07/2023 | GRAPPA10

DUNE will focus on a broad range of physics goals

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i,j} U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j} \exp\left[-i\frac{\Delta m_{ji}^{2}}{2}\frac{L}{E}\right]$$

Oscillation probability
from flavor α to β

NO : $m_1 < m_2 < m_3$ IO : $m_3 < m_1 < m_2$

Neutrino mass ordering

 $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

CP violation

DUNE will focus on a broad range of physics goals

 u_μ oscillation physics

≻Measure oscillation

parameters

➢Resolve neutrino

mass ordering

≻Measure amount of CP

violation in leptons

Other primary physics

goals

> Search for Proton

decay

 \succ Measure $\nu_{\rm e}$ flux from

Supernova explosion

Secondary physics goals

> Atmospheric/Solar

neutrino science

- \succ v–N interaction
 - physics using Near

Detector

▶ ...

THE NEAR DETECTOR COMPLEX

03/07/2023 | GRAPPA10

The Near Detectors will constrain effects of cross section, flux, and detector energy response to enable the oscillation physics

DUNE Near Detector complex

THE FAR DETECTORS

03/07/2023 | GRAPPA10

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Liquid Argon Time Projection Chambers (LArTPC) allow imaging of particle interactions with sub cm resolution

03/07/2023 | GRAPPA10

ProtoDUNE : An extensive R&D program at CERN to develop the Far Detector technology using two ~800 ton LArTPC detectors

DEEP UNDERGROUND NEUTRINO EXPERIMEN

ProtoDUNE : An extensive R&D program at CERN to develop the Far Detector technology using two ~ 800 ton LArTPC detectors

DUNE activites @Nikhef

- At Nikhef, we are working on
 - > Improving event reconstruction performance
 of the LArTPC detectors
 - > Understanding and validating EM shower response using ProtoDUNE data
 - > ProtoDUNE II construction and operation

DUNE activites @Nikhef

- At Nikhef, we are working on
 - > Improving event reconstruction performance
 of the LArTPC detectors
 - > Understanding and validating EM shower response using ProtoDUNE data
 - > ProtoDUNE II construction and operation
 - > Dedicated setup to characterize detector components interaction with scintillation

light for LAr/LXe experiments

Summary

- DUNE is an upcoming neutrino oscillation experiment that
 - > will answer fundamental questions about neutrinos with precision measurement of $\nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \nu_{e}/\bar{\nu}_{e}$ oscillations
 - > has a broad range of physics goals possible due to intense neutrino beam and complex detector technology
 - > has an extensive R&D program running at CERN for developing the DUNE Far Detectors

2024	2028	2031
ProtoDUNE II	First two FD modules	Beam and ND
run	are operational	complex are ready

Thank You

Backup

CP violation sensitivity

е

Neutrino oscillation experiments measure the PMNS matrix elements via appearance/disappearance of different flavors.

-> Pontecorvo–Maki–Nakagawa–Sakata matrix

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\Delta m i_{1}^{2} = m_{1}^{2} - m_{1}^{2}$$

$$P(v_{\alpha} \rightarrow v_{\beta}, t) = \left| \sum_{i} U_{\beta i} U_{\alpha i}^{*} \exp\left(-i\frac{\Delta m_{i12}t}{2E}\right) \right|^{2}$$

$$|U_{\text{PMNS}}| \sim \begin{pmatrix} 0.8 & 0.5 & 0.1 \\ 0.5 & 0.6 & 0.7 \\ 0.3 & 0.6 & 0.7 \end{pmatrix} \quad |V_{\text{CKM}}| \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

CP violation in lepton sector can be studied from differences in oscillation between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

3 Mixing angles: c_{ij} , sij ($\cos \theta_{ij}$ and $\sin \theta_{ij}$) 1 CP violation term δ

CP violation in lepton sector can be studied from differences in oscillation between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

NUFIT 5.2 (2022) NEUTRINO EXPERIMENT

Current best f	it
values	

DUNE:
Target resolution of
~0.005 on
$\sin^2\theta_{23}$ and $\sin^22 heta_{13}$

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.3)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
ospheric data	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.34\Gamma$	$0.3\overline{0}3^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	
	$ heta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	
	$\sin^2 heta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.623$	
	$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$	
atm	$\sin^2 heta_{13}$	$0.02203^{+0.00056}_{-0.00059}$	$0.02029 \rightarrow 0.02391$	$0.02219\substack{+0.00060\\-0.00057}$	$0.02047 \rightarrow 0.02396$	
t SK	$ heta_{13}/^{\circ}$	$8.54^{+0.11}_{-0.12}$	$8.19 \rightarrow 8.89$	$8.57^{+0.12}_{-0.11}$	$8.23 \rightarrow 8.90$	
without	$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \rightarrow 404$	286^{+27}_{-32}	$192 \rightarrow 360$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.03	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498\substack{+0.032\\-0.025}$	$-2.581 \rightarrow -2.408$	
		Normal Ore	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$	
lata	$ heta_{12}/^{\circ}$	$33.41\substack{+0.75\\-0.72}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	
ric e	$\sin^2 heta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$	
sphe	$ heta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$	
atmo	$\sin^2 heta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \to 0.02416$	
with SK a	$ heta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$	
	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$	

Neutrinos are produced in a variety of physical processes with energy from meV to EeV

DUNE will focus on a wide range of physics goals

Proton Decay via $p \rightarrow K^+ + \bar{\nu}, K^+ \rightarrow \mu^+ + \nu_{\mu}$

dE/dx measurements

Michel Electron Analysis

- DUNE plans to search for supernova neutrinos (10's MeV) and to measure solar neutrinos (few MeV).
- Michel electrons: a calibration sample to measure detector response to low energy electrons (~10's MeV).
- A cone is defined at the muon end point to include hits produced by Michel.
- The Michel electron selection achieves a 96% purity.
- A good data and MC agreement in reconstructed energy.
- The energy resolution is 26% at 50 MeV.
- Internal note under group review. A paper draft is being composed.

An intense neutrino beam is necessary to probe neutrino oscillations with sufficient precision

Liquid Argon Time Projection Chambers (LArTPC) allow imaging of particle interactions with sub-cm spatial resolution

A $v_e \left(4\frac{GeV}{c}\right)$ interact with Ar via inelastic resonance (RES) The decay products are $e^{-}\left(2.9\frac{GeV}{c}\right)$, $\pi^0\left(0.5\frac{GeV}{c}\right)$, $p\left(0.5\frac{GeV}{c}\right)$ and $n\left(1.2\frac{GeV}{c}\right)$

Example v_e interaction event simulated in DUNE Far Detector

DUNE timeline

DUNE activities @ Nikhef

• π^0 event reconstruction

> Important background in neutrino flavor identifcation

> Important candle for validating detector EM shower

response

DUNE activities @ Nikhef

- π^0 event reconstruction
 - Important background in neutrino flavor identification
 - Important candle for validating detector EM shower

response

$E_{corr} \approx E_{reco}$ / 0.851

DUNE activities @ Nikhef

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE activities @ Nikhef

Photon Detection

system of DUNE

➤ X-Arapuca: light

trapping to maximize

PDE.

