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ν

Backgrounds: 
γ e- ➙ γ e- 
n N ➙ n N
N ➙ N’ +  α, e- 

χN ➙ χN? 

very similar requirements!  
(and ideally also measure direction)  ν

ν

Dark Matter Direct Neutrino Detection    

ν
Signal: ν N ➙ ν N  or  ν e- ➙ ν e- 
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ν Cross Sections 

Z

N  

ν ν

N

O(tens) of events/ton-year = 
~ 10-46 cm2 limit 

An irreducible background, 
without direction measurement!

JM, P. Fisher, Phys. Rev. D 76:033007 (2007) 

ν-N coherent scattering: ~ A2 x (Eν/MeV)2 x 10-44  cm2 
recoils are O(10 keV) … neutrino floor in DM searches

Φ(solar B8 ν) = 
5.86 x 106 cm-2 s-1 

JM, P. Fisher, Phys. Rev. D76 (2007) 

J. Dobson, UCLA DM 2018

LZ Projected Nuclear Recoil Backgrounds

circa
2008

Aprile et al., PhysRevLett 123 (2019) 

circa
2018
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ν Cross Sections 

Z

e  

ν ν

e

J. Dobson, UCLA DM 2018

LZ Projected Nuclear Recoil Backgrounds

ν-e elastic scattering: smaller by ~ (me / Eν) 
but recoils are “high” energy ~ Eν  
and directional!

     ν-e backgrounds:  ν floor  
  depends on e- discrimination

LZ Projected Electronic Recoil Backgrounds

J. Dobson, UCLA DM 2018
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What ν sources can  
dark matter detectors see? 

DarkSide-20k:10k solar ν-e  
scatters /100 tonne-yrs

In 400 t-yr:  
CNO ~12%, Be-7~2% 
Franco et al., JCAP 08 (2016) 017 

      Jocelyn Monroe                                                                                                                                                

https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos


Solar ν-e Scattering

dark matter experiments can measure  
CNO (via spectral deformation) 

+with 500 t-y, study the  
solar metallicity puzzle 

exclusion detection

Franco et al., JCAP 1608 (2016) 08 
Cerdeno et al. JCAP 1804 (2018) 37

big opportunity: 
distinguish  
between  
high vs. low  
metallicity. 

big challenges: 
Rn background  
suppression and 
uncertainty on  
cosmogenics

*1-2 sigma discrimination possible in Xe, Baudis et al., arXiv:2006.03114 

0.7+0.3-0.2
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Why measuring CNO is so interesting: 

Metallicity measurements from emission 
are consistent with low-metallicity, and                    
ν oscillation data 

BUT 

Helioseismology measurements (whole sun)  
are consistent with high-metallicity 

Models can’t fit both! 

To resolve, need: 
1) direct measurements of CNO flux             

(depends on metallicity) 
2) Precise CNO vs. Be-7 flux measurements            

to test ‘cosmion’ models:  
  dark matter can resolve this tension by     
  changing heat transport, and thus fluxes 

Direct detection can do both! 

Solar ν Problem Puzzle

Silk, Sarkar, Frandsen, West ++

Vincent et al., PR
L 114 (2015) 8, 081302  
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‘Cosmion’, Redux

detection

re
la

tiv
e

relative

Lopes & Silk, arXiv:1812.07426 

2) Precision measurement of νe survival, 
     sensitive to changes in matter effects

mX = 4 GeV
mX = 5 GeV  
mX = 7 GeV 

 𝚫
P ν

e/
P ν

eSS
M

Lopes & Silk, Science 330, 2010 

1) Precision measurement of Be-7 vs. CNO ν flux

An indirect detection signature, 
 in a direct detection experiment!

How can we test this?

Projected uncertainties: DarkSide-20k  
400 t-yr: CNO ~12%, Be-7~2% 
Franco et al., JCAP 08 (2016) 017 
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What ν sources can  
dark matter detectors see? 

K-40 flux never measured 

Half of the Earth’s 33  
TW of heat flow is 
unexplained….
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ν-N scattering:  
Gelmini et al, arXiv:1812.05550

in a 10n T-year exposure…

  study with 500 neutrino background events 

Leyton, Dye, JM, Nature Commun. 8 (2017) 15989

~15o angular resolution on electron  
recoil direction brings K-40 discovery  
within reach with 100 tonne-year scale exposure

ν-e scattering has ~no threshold and geo-neutrinos point… 
low E dominated by the un-measured K-40 geoneutrino flux 

to the 
earth!
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Geo ν-Electron Scattering

challenge: measure the  
direction of ~1 MeV e- recoils 

energy, time, and direction analysis shows sensitivity at  
95% CL to measure K-40 flux with O(100) t-yr exposure. 

example: geo-, solar-, reactor-ν  
-induced electron recoil  
directions, at LNGS.

Leyton, Dye, JM, Nature Commun. 8 (2017) 15989

opportunity: + kt-yr exposures,  
potential for measurement of  
crust vs. mantle flux 

+predicted K-40 flux
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• directional dark matter detection studies show 1D direction reconstruction for                                 
χN ➙ χN nuclear recoils gains 10x over non-directional measurements, because                            
(energy, angle, time) of signal != background. 

• directionality could do the same for ν e ➙ ν e signal sensitivity in the MeV ν energy range 

mm sampling pitch in drift direction, demonstrated, makes direction reconstruction of ~cm length 
electron recoils feasible in 1D.  Transverse pitch is a challenge tackled by 3DdSiPM readout R&D… 

Recoil Directionality

exclusion detection

Mayet, JM et al., Phys.Rept. 627 (2016)

Signal +  
Background

Background



https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos

(if lucky!)

for a supernova at 10 kPc, 
expect 300-500 ν-N events 
in near-future experiments. 

Lang et al., Phys. Rev. D 94 (2016)
Arnaud et al., Phys.Rev.D.65.033010 What ν sources can  

dark matter detectors see? 
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e.g. 27 Msun supernova at 10 kPc,  
 ~300 ν-N events in DarkSide-20k 

  Agnes, JM et al., arXiv:2011.07819

Supernova ν in DarkSide-20k 

• measure all flavors via NC 
 sensitive to total SN energy in ν

• measure νe via 40Ar      e- 40K* 
sensitive to ν mass ordering
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  Agnes, JM et al., arXiv:2011.07819

Supernova ν in DarkSide-20k 

• measure all flavors via NC 
 sensitive to total SN energy in ν

• measure νe via νe 40Ar      e- 40K* 
sensitive to ν mass hierarchy

Mirizzi et al., arXiv:1508.00785

e.g. 27 Msun supernova at 10 kPc,  
 ~300 ν-N events in DarkSide-20k 

supernova distance measurement with ν?  
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What can future dark matter detectors  
tell us about the neutrino?  



What can future dark matter detectors  
tell us about the neutrino?  



Sterile ν Signatures

1) The beta decay energy spectrum of background, 
e.g. Ar-39, is modified by sterile neutrino mixing. 

Dragoun, Venos, Phys. 3 (2016) 77-113

Direct detection experiment sensitivity  
estimates range between beta decay   
and astrophysical constraints.

Astrophysical limits on |Ue4|2 at 10 keV mass ~1E=11 

Astrophysical searches: limits on |Ue4|2 at 10 keV 
are ~1E-11 from x-ray constraints 
+ excess x-ray flux at 3.5 keV, ~1E-10 mixing 

2) Sterile neutrino-electron scattering: 
 NS e-       νe e- 
Campos & Rodejohann, Phys.Rev.D 94 (2016)
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exclusion detection

ν-less Double Beta Decay

Xe dark matter searches aim for competitive sensitivity, via  
restricted fiducial volume (inner 1 t) to reduce backgrounds, and  
projected 1% energy resolution at the 2ν beta decay endpoint

big opportunity: 
significant Xe-136 
target mass (~600 kg) 

big challenges: 
Th background, 
energy resolution, 
and nuclear  
matrix element  
uncertainty

example:  
projected 
sensitivity 
in LZ: 

Q-value= 
2458 keV 

P. Bras, IDPASC 2018
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Can we get here? 

https://masterclass.icecube.wisc.edu/en/learn/detecting-neutrinos

https://www.sciencefocus.com/space/what-was-before-the-big-bang-everything-you-need-to-know/
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Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology, QUEST –DMC

WP1: Detection of sub-GeV dark matter with a 
quantum-amplified superfluid 3He calorimeter

50
 cm

Cooldown 
stages

Quantum-
enhanced 
superfluid 
bolometers: 
QP

80 µK

2 mK

Transition-
edge sensor:
Photons

• We will use the existing LANC platform to 
cool five 1 cm3 cells, each 0.1 gm of 3He, to 
80 µK, instrumented with nanobeams.

• Held in a box made of ultra-low radioactivity 
materials, inside of a 1000 cm3 3He bath. 

• The bath will be shielded inside a copper 
cryostat, cooled by a 4He-filled reservoir, 
hosted in a 1 m thick concrete shield.

• Quasiparticles generated  by a scattering 
event propagate ballistically until they are 
detected by a nanobeam.

• Transition edge sensors for photon detection
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

Goal: reach sub-eV recoil energy threshold in spin-
dependent dark matter search for scattering in   
Superfluid He-3 macroscopic quantum state 
pairing energy ~1E-7 eV 

Ionisation partition measurement 
• Detect scintillation in TES at mK stage 

Heat partition measurement 
• Quasiparticles “shake” a nano-electromechanical 

resonator (NEMS), coupled to SQUID, readout 
reaching quantum-limited displacement measurement 

UK Quantum Technologies for Fundamental Physics project,  
builds on European Microkelvin Platform 80 uK infrastructure 
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Agrawal et al., Eur. Phys. J. C 81, 11 (2021), 1015 

What happens when we get here?
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Agrawal et al., Eur. Phys. J. C 81, 11 (2021), 1015 

LZ,XENONn
T(2022)

    

What happens when we get here?
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Is the Neutrino Bound the End?  No.

simulation with 

PDFs in (energy, angle, time) of event for  
coherent solar neutrino background vs.  
background + dark matter signal are  
different! (includes angular resolution)

• modulation signatures still contains 
information (annual, sidereal) 

• directionality gains 10x in sensitivity 
in the presence of backgrounds 

• no neutrino bound for directional 
detectors Grothaus, Fairbairn, JM, Phys.ReV.D90 
(2014) 055018 

6 GeV 
30 GeV 
1000 GeV 
solid = with direction 
dotted = without direction 
dashed = neutrino bound from     
    Phys.Rev. D89, 023524 (2014)

 sensitivity scales with sqrt(time) instead of linearly in time (with zero background) 
 … neutrino flux and cross section systematics become crucial
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What happens when we get here?
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We enter a nu background paradigm… 

where the ‘neutrino floor’ depends on ER discrimination power  
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Summary & Outlook 

As we learn how to see dark matter… 

What is missing from our standard model of particle physics? 

What else might we find at the low-background frontier?? 

We only know what 4% of the universe is made of!  

Finding the rest has driven broad development of new technologies 
for particle detection. 


