

Multimessenger Astroparticle Physics

Exploring the Dark Universe from Particles to Galaxies - ISAPP

Foteini Oikonomou

Nov 16th and 17th

Norwegian University of Science and Technology

Lecture plan

- Observations and basic theoretical concepts
- Generic source properties
- Requirements for astrophysical accelerators of UHECRs/HE neutrinos
- Candidate astrophysical sources (Active Galactic Nuclei/Starburst Galaxies/Gamma ray bursts/Pulsars/Tidal Disruption Events)

Active Galactic Nuclei

Most powerful ``steady'' sources in the Universe (L≥1047 erg/s) > 1000 bright Galaxies!

They host a super-massive black hole (SMBH) $(10^{6}-10^{10} M_{sun})$. ``Active'' as emission >> stars in the galaxy - accretion on to SMBH

Visible to large redshifts (z > 7.5) - peak $z \sim 2$ (depends) on type)

1% of galaxies active

Broad emission lines reveal rapid bulk rotation

[Spectra from: https://www.open.edu/openlearn/science-maths-technology/introduction-active-galaxies/content-section-2.2.2]

Artist's impression of non-jetted AGN shrouded in dust [NASA/JPL]

The engine

An efficient way to produce the power required, is through accretion onto a black-hole. As much as 10% of the rest mass energy in-falling into a black hole is converted into radiation

$$L_{\rm disk} = 0.1 \dot{M}c^2 = 10^{46} \text{ erg/s}$$

In solar masses per year, the requirement is

$$\dot{M} = \frac{L_{\text{disk}}}{0.1c^2} = 1.75 \frac{L_{\text{disk}}}{10^{46} \text{ erg/s}} M_{\text{Sun}} \text{ yr}^{-1}$$

This should be "easy" to supply. A typical galaxy might have gas mass,

$$M_{\rm gas} \sim 10^{10} M_{\rm Sun}$$

The engine

For an AGN with disk luminosity

$$L_{\rm disk} = 10^{46} {\rm ~erg/s}$$

and time variability

 $\Delta t = 10^4$ s, causality dictates $R \sim c\Delta t = 0.01$ pc = 20 AU

We need a supermassive black hole due to the Eddington limit!

$$L_{\rm Edd} = \frac{4\pi G M m_p c}{\sigma_{\rm T}} = 10^{38} {\rm erg/s} \left(\frac{M}{M_{\rm Sun}}\right)$$

I.e. we need,

$$M \ge 10^8 M_{\rm Sun} \left(\frac{L_{\rm disk}}{10^{46} \, \rm erg/s} \right)$$

AGN Unification

The majority of AGN classes can be explained by three parameters:

- Orientation •
- Presence of jet or not (10% have it) •
- Radiative efficiency •

	Face on	Side-view
Jetted (radio-loud)	Blazars (BL Lac/ FSRQ)	Radio-Galaxies (FRI/II)
Non-jetted (radio-quiet)	Seyfert I	Seyfert II

10% of AGN host jets

FRI

FRII

Radio galaxy Cygnus A Image credits: NRAO/AUI,A. Bridle

Blazars: Star-like appearance

Radio

No spectacular jets...but wealth of information from timing/variability and spectra!

Optical

Relativistic beaming

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma} \qquad \Delta t = \Delta t' \Gamma \qquad \Gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Relativistic beaming

If the emitting region is moving relativistically, observed features appear boosted:

Doppler factor, $\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)}$

 $\Delta t = \Delta t' / \delta$ (shortening of timescales) $\Delta x = \Delta x' \ \delta$ $\nu = \delta \nu', E = \delta E'$ (blueshift) $L_{\rm obs} = \delta^4 L'$ (dashes denote rest-frame quantities)

Special cases:

$$\delta_{\max} = \delta(0^{\circ}) = \frac{1}{\Gamma(1-\beta)} = \Gamma(1+\beta) \sim 2\Gamma$$

$$\delta_{\min} = \delta(90^{\circ}) = 1/\Gamma - \text{recover special relativity}$$

$$\theta = 1/\Gamma, \cos \theta \approx 1 - \frac{\theta^2}{2} \approx \beta, \ \delta = \Gamma - \text{opposite}$$

>90% of extragalactic Fermi sources (see also TeVCaT)

Blazar spectral energy distribution

Blazar classes: BL Lac objects and FSRQs

BL Lac Object

Optical light

Flat spectrum radio quasar

erg νL_{ν}

Blazar classes: BL Lac objects and FSRQs

BL Lac Object

Flat spectrum radio quasar

Relativistic electrons in a compact, relativistic region moving at $\beta \sim 1$

Magnetic field strength B, doppler factor δ , electron Lorentz factor γ

Log v

Log v

From the peak frequencies we have,

$$\nu_{C} = \frac{4}{3} \gamma_{\text{break}}^{2} \nu_{S}$$
$$\gamma_{\text{break}} = \left(\frac{3\nu_{C}}{4\nu_{S}}\right)^{1/2}$$

For OJ 287
$$\gamma_{\text{break}} = \left(\frac{\nu_C \sim 10^{21}}{\nu_S \sim 10^{13}}\right)^{1/2} \sim 10^4$$

20

Low peak very likely synchrotron all from same region (correlated variability)

$$L_{\rm s} \propto U_B - (1)$$
$$U_B = \frac{B^2}{8\pi} - (2)$$

Often correlated variability in high peak, -> Inverse Compton with synchrotron photons

$$L_{\rm IC} \propto U_{\rm rad} - (3)$$
$$U_{\rm rad} = \frac{L_s}{4\pi R^2 \delta^4 c} - (4)$$
$$R = ct_{\rm var} \frac{\delta}{1+z}$$

Combining (1), (2) & (3)

$$\frac{L_C}{L_S} = \frac{U_{\text{rad}}}{U_B} = \frac{2L_s}{R^2\delta^4 cB^2}$$

Rearranging, we get,

$$B^{2}\delta^{3} = (1+z)\frac{L_{s}}{ct_{\text{var}}}\left(\frac{2}{cL_{C}}\right)^{1/2} - (5)$$

22

From the peak frequencies we have,

$$\nu_C = \frac{4}{3} \gamma_{\text{break}}^2 \nu_S$$

$$\gamma_{\text{break}} = \left(\frac{3\nu_C}{4\nu_S}\right)^{1/2} - (6)$$

$$\nu_{S} = \frac{4}{3} \gamma_{\text{break}}^{2} \nu_{B} \approx 3.7 \cdot 10^{6} \gamma_{\text{break}} B \frac{\delta}{1+z}$$

Using (6) we get

$$B \cdot \delta = (1+z)\frac{\nu_S^2}{2.8 \cdot 10^6 \nu_C} - (7)$$

We now have 2 equations (5,7) and 2 unknowns

23

UHECR acceleration?

For OJ 287: $t_{\rm var} \sim 10^4 \text{ s}, \nu_{\rm s} \sim 5 \times 10^{13} \text{ Hz}, \nu_{\rm c} \sim 10^{21} \text{ Hz}$ $L_C \sim L_S \sim 10^{46}$ erg/s $\therefore B \approx 0.4 \ G, \delta \approx 20$ $E_{\rm max} \sim ZeB\Gamma R \sim Z \cdot 4 \times 10^{20} \ {\rm eV}$ For typically inferred parameters $B' \sim 0.1 - 1$ Gauss $\Gamma \sim \delta \sim 10 - 50$ $R' \leq \delta t_{\text{Var}} c, t_{\text{Var}} \sim \text{day}$ $E_{\rm max} \sim ZeB'\Gamma R' \gtrsim Z \cdot {\rm few} \times 10^{19} {\rm eV}$

Neutrino production in blazars

Neutrino production in blazars

Accretion disk

 $p + \gamma \rightarrow n + \pi^+ \rightarrow n + \mu^+ \nu_\mu \rightarrow n + e^+ + \nu_e + \bar{\nu_e} + \bar{\nu_\mu} + \bar{\nu_\mu}$ $p + \gamma \rightarrow p + \pi^0 \rightarrow p + \gamma + \gamma$

Averaged branching ratio,

$$R_{\pi} = \frac{\Gamma(\rightarrow \pi^{+/-})}{\Gamma(\rightarrow \pi^{0})} \sim 1 \qquad \qquad E_{\nu}^{2} \frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}$$

D

D

 $= \frac{3}{2} \frac{1}{2} E_{\gamma}^{2} \frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} |_{E_{\gamma} = 2E_{\nu}} \longrightarrow \text{gamma-rays give us an upper limit to}$ the neutrino flux

Very powerful collimated jets Radiatively efficient accretion disk Luminosity close to Eddington limit

Less collimated jets Radiatively inefficient accretion disk

Neutrino production in blazars

Stacking limits from lceCube 10^{-6} Murase+14 $L_p/L_\gamma = 3$ Sr Padovani+15 $F_{\nu}/F_{\gamma} = 0.8$ 10^{-7} \mathbf{S}^{-1} Astro cascades Astro $\nu_{\mu} + \bar{\nu}_{\mu}$ \mathbf{Q} 10^{-8} $E^2 \mathrm{d}N/\mathrm{d}E \, [\mathrm{GeV \, cm}]$ All blazars (GeV γ rays) < 17 % 10^{-9} 10^{-10} - 10^{-11} 10^{14} 10^{15} 10^{13}

Stacking limits from IceCube Murase+14 $L_p/L_\gamma = 3$ Sr Padovani+15 $F_{\nu}/F_{\gamma} = 0.8$ 10^{-7} Astro cascades ່ທ Astro $\nu_{\mu} + \bar{\nu}_{\mu}$ $\mathbf{\dot{n}}$ 10^{-8} -> $E^2 \mathrm{d}N/\mathrm{d}E \left[\mathrm{GeV \, cm}\right]$ 10^{-9} 10^{-10} 100 brightest blazars (MeV γ rays) < 1 % 10^{-11} 10^{14} 10^{13} 10^{15}

Stacking limits from IceCube

TXS 0506+056-IC 170922A

1 0

0.0

× 1.0 N U.5

IceCube, Fermi-LAT, MAGIC, A<mark>GILE,</mark> ASAS-SN, HAWC, H.E.S.S, INTEGRA<mark>L, Ka</mark>nata, Kiso, Kapteyn, Liverpool telescope<mark>, Sub</mark>aru, Swift/ NuSTAR, VERITAS, and VLA/178-403 teams. Science 361, 2018, MAGIC Coll. Astrophys.J. 8<mark>63 (2</mark>018) LIO

Background fluctuation? Chance probability ~0.3%

)9-06	2010-11	2012-03	2013-07	20 <mark>14-</mark> 12	2016-04	203
-170922	2A					
eutrino f	lare 2014/15	5				
amma-ra	ay flare 2017	/18				
rmi-LAT	> 300 MeV					
• ••+ •+++	┍╪┿╧ _{╅┿╋} ┶╪┷╧ _╅	╫ _{╃╋} ╵╵╹ _{╋╋╼╋} ╋╋╋	╺╾┿ ^{╋┿} ╋╻╻╇╼┿╋╺┿	++1+	╴╶╴ ╾╼╾╼┙╾┿┙╼╴	
36						

17-09

IceCube archival search 13±5 more neutrinos!

IceCube Collaboration: M.G. Aartsen et al. Science 361, 147-151 (2018)

Blazar flares: Interesting as neutrino point sources

Image from Biteau, Prandini, Costamante+ Nat. Astr 4, 124–131 (2020)

Optical depth to $\boldsymbol{p}\boldsymbol{\gamma}$ interactions

 $\tau_{p\gamma}(E'_p) \approx \sigma_{p\gamma} r_b n_{\epsilon'_t} |_{\epsilon'_t = m_\pi c^2 (m_\pi c^2 + m_p c^2)/2E'_p}$

At the same time $\gamma\gamma$,

$$\tau_{\gamma\gamma}(\varepsilon_{\gamma}') \approx \sigma_{\mathrm{T}} r_{\mathrm{b}}' n_{\varepsilon_{t}'} |_{\varepsilon_{t}' = m_{e}^{2}/E_{\gamma}'}$$

Ratio of optical depths is then,

$$\tau_{p\gamma}(E'_p) \approx \frac{\kappa_{p\gamma}}{\kappa_{\gamma\gamma}} \frac{\sigma_{\gamma p}}{\sigma_{\gamma\gamma}} \tau_{\gamma\gamma}(E'_{\gamma}) \approx \frac{10^{-28} \text{ cm}^2}{10^{-25} \text{ cm}^2} \tau_{\gamma\gamma}(E'_{\gamma}) \approx 10^{-3} \tau_{\gamma\gamma}$$

At energy, $E'_{\gamma} \sim 15 \text{ GeV} \left(\frac{E'_p}{6 \text{ PeV}}\right) \sim 15 \text{ GeV} \left(\frac{E'_{\nu}}{300 \text{ TeV}}\right)$

This implies that sources optically thin to gamma-rays have inefficient TeV neutrino production

 $p + \gamma \to \pi + X$ $\gamma + \gamma \to e^+ + e^-$

1. $\tau_{\gamma\gamma}(10 - 100 \,\text{GeV}) \lesssim 1$

 $p_{\text{PeV}} + \gamma \rightarrow p + e^+ + e^- \rightarrow$ the electrons undergo synchrotron or Inv. Compton \rightarrow cascade that peaks in keV band

3/8ths of proton energy lost → neutrinos rest (5/8ths) to photons (gamma-rays/X-rays)

$p_{\text{PeV}} + \gamma \rightarrow p + \pi^0 \rightarrow p + \gamma + \gamma \qquad \gamma + \gamma_{\text{jet/BLR}} \rightarrow e^+ e^- \rightarrow \text{synchrotron or inv. Compton}$

3/8ths of proton energy lost \rightarrow neutrinos rest (5/8ths) to photons (gamma-rays/X-rays)

Blazar contribution to UHECR/neutrino flux?

Scorecard

	Emax	$\bar{n}_{\rm eff, UHECR}$	$\bar{n_{\mathrm{eff},\nu}}$	$\dot{\varepsilon}_{ m UHECR}$
BL Lac	not for H			
FSRQs				
FR I	not for H			
FR II			~~~	
Starbursts				
HL GRBs				
LL GRBs				
Pulsars				
TDEs		45		

Non-jetted AGN

- Unidentified LINER
- Unknown AGN
- Galaxv Clusters
- X-ray Binaries

Swift-BAT 105-month hard-X-ray catalogue 2018

Narrow Absorption Lines (NAL)

 $\log \xi = 0 - 1.5 \text{ erg cm s}^{-1}$ $\log N_{\rm H} = 18 - 20 \ {\rm cm}^{-2}$ Velocity = 100 - 1000 km/s Distance scale ~ 1pc - 1kpc

Broad Absorption Line (BAL)

 $\log \xi = -0.5$ to 2.5 erg cm s⁻¹ $\log N_{\rm H} = 20-23. \ {\rm cm}^{-2}$ Velocity = 10,000- 60,000 km/s Distance scale= 0.001pc - 500 pc

Non-jetted AGN contribution to the cosmic-neutrino flux

Infrared selected (ALLWISE) AGN with soft-X-ray weights ~ 32,249 AGN

 2.6σ excess w.r.t. background

Neutrino production in NGC 1068

see also Kheirandish et al 2021 Anchordoqui et al 2021

Starburst + AGN corona composite (pp)

Halzen 2023

Possible sites of neutrino production consistent with NGC 1068

F. Stecker, Phys. Rev. Lett. 66, 2697 (1991)

K. Murase, F. Stecker "Neutrino Physics & Astrophysics" Review 2022

Scorecard				
	<i>E</i> _{max}	$\bar{n}_{\rm eff, UHECR}$	$\bar{n_{\mathrm{eff},\nu}}$	$\dot{\varepsilon}_{ m UHECR}$
BL Lac	not for H			
FSRQs				
FR I	not for H			
FR II			~	
Non jetted AGN	~			
Starbursts				
GRBs (LL GRBs)				
jetted TDEs (non jet	ted)	54		

Starburst galaxies

Starburst definition: High star-formation rate per unit stellar mass compared to average galaxy at that redshift (> $100 \times$ Milky Way)

Starburst episodes are short-lived (<10⁸ yrs)

Centrally driven strong outflows (``superwinds'')

Column densities $\Sigma_g > 0.1 \text{g/cm}^2$ and magnetic fields B ~ 1 mG (B ~ Σ_g), which are much larger than those of ``normal'' spiral galaxies ($\Sigma_g \approx 0.003 \text{g/cm}^2$, B ~ 5μ G in the Milky way)

TeV gamma-ray detections from NGC 253 (~3 Mpc) & M82 (~4 Mpc) - consistent with point like at VHE

And a handful more in GeV gamma-rays (NGC4945, NGC1068, Circinus, Arp 220)

UHECRs from starburst galaxies?

Wind •

Particle acceleration in the superwinds of starburst galaxies

G. E. Romero^{1, 2}, A.L. $\text{Müller}^{1, 3, 4}$, M. Roth^3 no!

generally E_{max} (Fe) ~ 10¹⁸ eV but possible if strong amplification of MF by cosmic-rays

Reservoir model: Hypernovae/LL GRBs could do the job

Proton-proton interactions Gas reservoirs (Starburst galaxies, Galaxy Clusters...)

$$\begin{array}{c} p+p \rightarrow N\pi + X \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu + \bar{\nu}_\mu + \nu_e \end{array}$$

Energy

• • •

Neutrinos from starburst galaxies

Cannot produce the IceCube flux unless we focus on >100 TeV data only due to diffuse gamma-ray constraints

Scorecard				
	E _{max}	$\bar{n}_{\rm eff, UHECR}$	$n_{\mathrm{eff},\nu}$	$\dot{\varepsilon}_{ m UHECR}$
BL Lac	not for H			
FSRQs				
FR I	not for H			
FR II			~	
Non jetted AGN	~			
Starbursts				
GRBs (LL GRBs)				
jetted TDEs (non jetted)		60		

Gamma-ray bursts Fermi-LAT 10 year GRB map

Fermi-LAT 2nd GRB Catalogue, 2019

Gamma-ray bursts, basic facts

- Discovered serendipitously in 1967
- Intense short flashes of light peaking in the 10 keV
 I MeV range
- Isotropic equivalent energy release ~10⁵²-10⁵⁵ erg (cf <10⁴⁹ erg/s in AGN)
- Rate \sim 1000 year occur in the Universe
- Short (0.3 second) and long (50 second) bursts two distinct populations
- ``Afterglow'' fading emission for hours to months..

Gamma-ray bursts, basic facts

On August 17th, 2017 LIGO and Virgo reported the detection of GWs from the coalescence of a binary neutron star system

Fermi GBM independently detected the sGRB GRB170817A, 1.7s later

An extensive observational campaign localised SGRB in the early type NGC 4993, at d ~ 40 Mpc

GW170817 and GRB170817A confirm binary neutron stars as progenitors of SGRBs ($p_{chance} \sim 10^{-8}$)

Gamma-ray bursts, basic facts

- shouldn't be able to escape
- •

 $\gamma\gamma \to e^+e^-$, at threshold, $\varepsilon'_{\gamma,1}\varepsilon'_{\gamma,2}(1-\cos\theta) \ge 2m_e^2$. For head-on collision $\cos\theta = \pi$, $\varepsilon'_{\gamma,1} = m_e^2/\varepsilon'_{\gamma,2}$

But
$$\varepsilon = \varepsilon' \Gamma$$
, thus, $\varepsilon_{\gamma,1} = m_e^2 \Gamma^2 / \varepsilon_{\gamma,2}$

 $\tau_{\gamma\gamma} = \sigma_{\rm T} n_{\gamma}' R'$

$$\tau_{\gamma\gamma} = \sigma_{\rm T} \frac{L_{\rm iso}(\varepsilon_{\gamma})}{4\pi R^2 c \Gamma \varepsilon_{\gamma}} \frac{c t_{\rm v}}{\Gamma}$$

Implies $\Gamma > 10^3$ for the brightest GRBs

• ``Compactness'' problem: Photons are crowded in GRBs. The observed luminosity implies that gamma-rays

But, $\tau_{\gamma\gamma}$ (10 GeV) < 1, since we observe these photons (gamma-rays that escape are $\sim e^{-\tau_{\gamma\gamma}}$)

Maximum energy

Very high Lorentz factors

Highly magnetised expanding jet

$$E_{\rm max} \approx 10^{20} \ {\rm eV} \left(\frac{\dot{\varepsilon}_{\rm GRB}}{10^{51} \ {\rm erg}} \right)$$

Waxman 1995, Vietri 1995

possible neutrino production sites

Neutrino production in GRBs

Ample photon fields \rightarrow photopion interactions

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow n/p + \pi^+/\pi^0$

$$E_{p}E_{\gamma} \gtrsim \frac{m_{\Delta}^{2} - m_{\pi}^{2}}{4} \left(\frac{\Gamma}{1+z}\right)^{2} = 0.16 \text{ GeV}\left(\frac{\Gamma}{1+z}\right)^{2}$$
$$E_{\nu} \geq 8 \text{ GeV}\left(\frac{\Gamma}{1+z}\right)^{2} \left(\frac{E_{\gamma}}{\text{MeV}}\right)^{-1}$$

e.g. prompt emission,

 $z = 1, \Gamma^2 = 10^5, E_{\gamma} \sim 250 \text{ keV} \rightarrow E_{\nu} \sim \text{PeV}$

possible neutrino production sites

GRB contribution to the cosmic-neutrino flux

Stacked search for neutrinos coincident with prompt GRB emission.

2091 GRBs

IceCube Coll, ApJ 843 (2017) 112 IceCube Coll., Fermi GBM Coll, Apj 939 (2022) 2 +strong limits from GRB221009A (the ``BOAT'') IceCube Coll ApJL 946 L26 (2023) ANTARES Coll MNRAS 469 906 (2017)

Prompt ($\Delta T_{promt} \sim I - I00s$): < 1% diffuse neutrino flux

Precursor/Afterglow ($\Delta T_{afterglow} \pm 14d$): < 24% diffuse neutrino flux

Scorecard				
	Emax	$\bar{n}_{\rm eff, UHECR}$	$n_{\mathrm{eff},\nu}$	$\dot{\varepsilon}_{ m UHECR}$
BL Lac	not for H			
FSRQs				
FR I	not for H			
FR II			~~~	
Non jetted AG	IN 😕			
Starbursts				
GRBs (LL GRE	3s) 🔐 (?)	()	())	(@)
jetted TDEs (non j	etted)	69		

Tidal disruption events

- Super Massive Black Holes are orbited by star clusters
- Millions or billions of stars in random orbits Tidal forces may deform, or tear into pieces a star
- approaching too closely
- Predicted rates of I TDE in 10000 to 10⁹ years per super massive black hole (SMBH)
- For tidal forces to be relevant they must be stronger than the star's self gravity

Tidal acceleration > Accel. due to self gravity

$$\frac{GM_{\rm SMBH}R_{\star}}{R_t^3} = \frac{GM_{\star}}{R_{\star}^2}$$

Tidal disruption events

For tidal disruption to occur $R_p < R_t$

 R_t must be outside the event horizon for visible TDE The Schwarzschild radius is

$$M_{\rm SMBH} \le M_{\star}^{-1/2} \left(\frac{c^2 R_{\star}}{2G}\right)^{3/2} \approx 10^8 M_{\odot} \left(\frac{R_{\star}}{R_{\odot}}\right)^3$$

For $R_t > r_s$

Tidal disruption events

Flare of electromagnetic radiation at high peak luminosity (X-rays)

Located in the core of an otherwise quiescent, inactive galaxy

Extreme flares can host a relativistic hadronic jet

Typically 50% of the star's mass expected to stay bound to the SMBH and be ultimately accreted

~100 candidate TDEs observed so far, 3 with jets (hard X-ray spectrum)

Timescale of months to years

Swift J1644+57

Test case, Swift J1644+57, jetted TDE observed in ``blazar'' mode

Observed for ~600 days, in a small quiescent galaxy in the Draco constellation at z = 0.35

$$E_{\rm max} \sim 10^{20} \text{ eV } Z \frac{BR}{3 \times 10^{17} \text{ G cm}} \frac{\Gamma}{10}$$

Neutrinos from TDEs?

Photopion interactions in the jet (conditions similar to AGN/GRB)

One problem is that jetted TDEs are very rare

 $n = 10^{-11} Mpc^3 cf GRBs, n = 10^{-9} Mpc^3$

Non-jetted TDEs 10 - 100 times more numerous, but not clear if (where?) they accelerate 10¹⁷ eV protons

Stacking limits from IceCube (jetted TDEs < 1%, non-jetted < 26%)

AT2019dsg + IC191001A

AT2019fdr+IC200530A, AT2019aalc+IC191119A

Combined significance 3.7 If the associations are real they point to very extreme physical conditions ``super_Eddington" accretion

Van Velzen et al 2021.09391

77

Neutrino production in AT2019dsg

see also Hayasaki et al 2019 Winter, Lunardini 2020 Winter, Lunardini 2022 Banik & Bharda 2022

Example neutrino spectra (AT2019dsg)

Scorecard					
		Emax	$\bar{n}_{\rm eff, UHECR}$	$\bar{n_{\mathrm{eff},\nu}}$	$\dot{\varepsilon}_{ m UHECR}$
	BL Lac	not for H			
	FSRQs				
	FR I	not for H			
_	FR II			~	
_	Non jetted AGN				
	Starbursts				
	GRBs (LL GRBs)	(?)	()	<mark>~ (</mark> ())	()
	jetted TDEs (non jetted)	(~)	79	<mark>~ (</mark>)	()

Neutron stars

Fermi has detected >200 Galactic pulsars

Collapsing stars with mass $> 8 M_{Sun}$

Collapse leads to heating up and density approaches nuclear densities

 $e^- + p^+ \rightarrow n + \nu_e$

"neutronisation"

The core of the star was originally $R_{star} \sim 10^{3-4} \text{ km}$

whereas the neutron star radius is $R_{NS} \sim 10 \text{ km}$

Conservation of angular momentum leads to spin periods ~second

Conservation of magnetic flux leads to $B \sim 10^{10} \text{ G}$

Pulsar UHECR acceleration

Unipolar inductor:

strong magnetic field, B

fast rotation velocity, Ω

Maximum acceleration energy for fastest spinning sources:

$$\gamma_{\rm acc}^{\rm max} = \frac{Ze}{Am_N} \Delta \phi = 7 \times 10^{10} \frac{Z}{A} \left(\frac{B}{10^{13} \text{ G}}\right) \left(\frac{R}{10 \text{ km}}\right)^3 \left(\frac{P}{1 \text{ ms}}\right)^{-2}$$

SN envelope = dense baryonic background UHECR experience hadronic interactions

Pulsar origin of IceCube neutrinos?

IceCube Coll. PoS(ICRC2017)981

Fermi has detected >200 Galactic pulsars

The current landscape: Stacking upper limits summary of IceCube stacking analyses results,

list of references in

Thank you for your attention!

