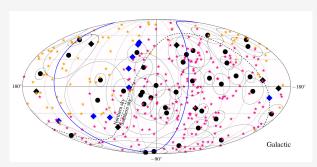
Point-source searches in Astro-Particle Physics

Charles Timmermans

Nikhef, Radboud University



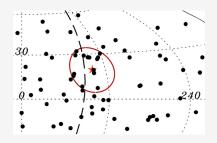
Literature

- Ti-Pei Li and Yu-Qian Ma, Astrophys.J. 272 (1983)
- Telescope Array Collaboration
 - Astrophys.J. 804 (2015)
 - Astrophys.J. 790 (2014)
- J. Brown et al., Astropart. Phys. 33 (2010)
- IceCube Collaboration
 - Astrophys.J. 796 (2014)
 - Astrophys.J. 779 (2013)
- Auger Collaboration
 - Astrophys.J. 804 (2015)
 - Phys.Rev.Lett. 101 (2008)
- TA, IC, Auger collaborations, JCAP 1601 (2016)

- Specific problems for searches in APP
 - source location unknown
 - source characteristics unknown
 - background model unreliable
 - data volume grows linearly
- Single source and Prescription (Auger correlation)
- Significances (TA enhancement)
- Unbinned likelihood (Icecube search)

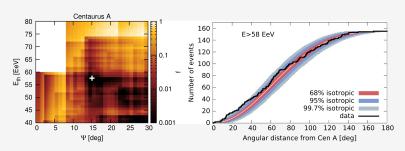
Centaurus A: The Auger warm spot

- Event selection:
 - E > 50 EeV
 - ψ < 18°



- Situation in 2010:
 - 13 events correlate within 18° where 3.2 are expected
 - Poisson probability $P(N > 18, 3.2) \simeq 10^{-4}$
- Situation in 2015:
 - 18 events correlate where 9 are expected

Centaurus A: The Auger warm spot



- 14 events with expectation of 4.2: $p = 2 \cdot 10^{-4}$
 - scan over many not-independent possibilities
 - How to calculate the significance?
 - simulate same number of events as data isotropically distributed many times
- For Centaurus A $\mathcal{P} \simeq 1.4\%$

Auger Correlation

Catalog correlation

In 2007 Auger investigated the correlation of UHECR with objects from the VCV catalog.

Chance probability of correlation of at least k uniformly distributed cosmic rays:

$$P = \sum_{j=k}^{N} \frac{N!}{(N-j)!j!} p^{j} (1-p)^{N-j}$$

p is the chance probability of cosmic ray to be correlated with catalog.

p determined from MC.

Catalog correlation

Problem: Limited dataset that does not grow exponentially.

Solution: Scan parameters with available data, use new data to test this *prescription*

Dataset: all obtained before May 27, 2006.

Selection

- Source candidates within 75 Mpc
- Event energy > 56 EeV
- Angular distance to source within 3.1°
- p = 21%
- 12 of 15 events correlate to catalog.
- 3.2 events expected.

Auger Correlation

Null hypothesis: Data is uniformly distributed

- α: probability to reject null hypothesis incorrectly
 - Declaring anisotropy when it is not
 - $\alpha = 0.01$
- β: probability to accept null hypothesis incorrectly
 - Declare isotropy when it is not
 - $\beta = 0.05$
- Perform a running prescription
 - Reject isotropy with at least $(1 \alpha) = 0.99$
 - Minimal correlation 60 %
 - β remains below 5 %

Test Criterium

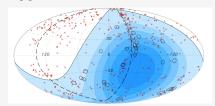
A positive exit for new data (Binomial Statistics):

						٠,				
\overline{N}	4	6	8	10	12		30	31	33	34
k_{\min}	4	5	6	7	8		14	14	15	15

- May 25 2007 6 out of 8 events correlated.
 - Prescription satisfied
- August 31 2007 8 out of 13 events correlated
 - Chance probability $1.7 \cdot 10^{-3}$

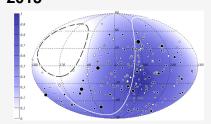
Result

2007



First series of events correlating.

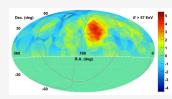
2015



Correlation disappeared.

Note that the probability to reject the null hypothesis incorrectly was 1 %!

Telescope Array excess



Significance of local excess: 5.1 What does this mean?

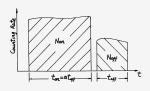
Luckily the paper answers the question:

We calculated the statistical significance of the excess of events compared to the background events at each grid point of the sky using the following equation (Li & Ma 1983)

$$S_{LM} = \sqrt{2} \left[N_{on} \ln rac{(1+lpha)N_{on}}{lpha(N_{on}+N_{off})} + N_{off} \ln rac{(1+lpha)N_{off}}{N_{on}+N_{off}}
ight]^{rac{1}{2}}$$

Lets discuss Li-Ma significance first.

First used in gamma-astronomy



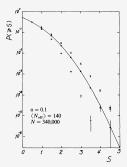
$$lpha = rac{T_{on}}{T_{off}}$$
 $\hat{N}_B = lpha N_{off}$
 $N_S = N_{on} - \hat{N}_B = N_{on} - lpha N_{off}$

What is the significance of an enhancement of the measurement in a signal region?

Assumptions:

- Background determined from a measurement
 - Thus contains uncertainty
- Signal region contains a background fluctuation

Frequentist interpretation



$$S = \frac{N_S}{\hat{\sigma}(N_s)}$$
$$= \frac{N_{on} - \alpha N_{off}}{\sqrt{N_{on} + \alpha^2 N_{off}}}$$

Line: Normal distribution Plusses: Significance S

Problem: The calculated significance is not in agreement with a background only hypothesis.

Solution: Make this hypothesis explicit!

Assuming Background only (Null hypothesis): also in the signal bin, there is only background. The best background estimate includes the signal bin:

$$\hat{N}_{B} = rac{N_{on} + N_{off}}{t_{on} + t_{off}} t_{on} = rac{lpha}{1 + lpha} \left(N_{on} + N_{off}
ight)$$

Suppose we have data $X(x_1,...x_N)$, and parameters $E(\epsilon_1...\epsilon_M)$ and statistical hypotheses E_0 and $E \neq E_0$, we can define the maximum likelihood ratio

$$\lambda = \frac{L(X|E_0)}{L(X|\hat{E})} = \frac{P_r(X|E_0)}{P_r(X|\hat{E})}$$

If the null hypothesis is true, $-2 \ln \lambda$ follows a χ^2 distribution with r degrees of freedom.

Here
$$X = (N_{on}, N_{off}), E = (N_S, N_B), E_0 = (0, N_B)$$

In this case only $N_{\rm S}$ is involved in the null hypothesis, so r = 1.

The maximum likelihood:

$$L(X|E) = P_r(N_{on}, N_{off}|N_S, N_B)$$

$$= P_r(N_{on}, N_{off}|N_{on} - \alpha N_{off}, \alpha N_{off})$$

$$= P_{Poisson}(N_{on}|N_{on})P_{Poisson}(N_{off}|N_{off})$$

$$= \frac{N_{on}^{N_{on}}}{N_{on}!}e^{-N_{on}}\frac{N_{off}^{N_{off}}}{N_{off}!}e^{-N_{off}}$$

Keep in mind:

$$P_{Poisson}(N|\mu) = \frac{\mu^N}{N!}e^{-\mu}$$

$$L(X|E_0) = P_r(N_{on}, N_{off}|N_S, N_B)$$

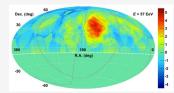
$$= P_r(N_{on}, N_{off}|0, \frac{\alpha(N_{on} + N_{off})}{1 + \alpha})$$

$$= P_{Poisson}(N_{on}|\frac{\alpha(N_{on} + N_{off})}{1 + \alpha})P_{Poisson}(N_{off}|\frac{(N_{on} + N_{off})}{1 + \alpha})$$

Therefore:

$$\lambda = \left[rac{lpha}{1+lpha}rac{N_{on}+N_{off}}{N_{on}}
ight]^{N_{on}}\left[rac{1}{1+lpha}rac{N_{on}+N_{off}}{N_{off}}
ight]^{N_{off}}$$
 $S_{LM} = \sqrt{2}\left[N_{on}\lnrac{(1+lpha)N_{on}}{lpha(N_{on}+N_{off})}+N_{off}\lnrac{(1+lpha)N_{off}}{N_{on}+N_{off}}
ight]^{rac{1}{2}}$

Telescope Array excess



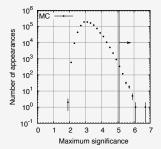
A local excess of 5.1 sigma is observed.

The probability of this to happen in any test is $3.4 \cdot 10^{-7}$

How many tests have been performed? The sky is divided into many bins, all correlated!

Telescope Array excess

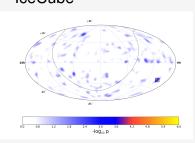
- Generate MC. 1,000,000 MC datasets are generated.
- Perform same analysis
- Safe Maximum Significance



In 365 out of 1,000,000 datasets $S_{LM} > 5.1$ Thus $P = 3.7 \cdot 10^{-4}$.

IceCube Discovery Potential

Searches for Extended and Point like sources using IceCube



The significance is estimated by using an unbinned likelihood ratio test (Braun *et al.* 2010).

Unbinned likelihood

- S_i: Signal PDF
- B_i: Background PDF
- n_s: Unknown contribution of signal events

$$\mathcal{L}_i(n_s) = \frac{n_s}{N} \mathcal{S}_i + \left(1 - \frac{n_s}{N}\right) \mathcal{B}_i$$

And for all events:

$$\mathcal{L}(n_s) = \prod_{i=1}^{N} \left[\frac{n_s}{N} \mathcal{S}_i + \left(1 - \frac{n_s}{N} \right) \mathcal{B}_i \right]$$

Likelihood ratio test:

$$D = -2\ln(\lambda) = -2\ln\left[rac{\mathcal{L}(n_{\mathrm{s}}=0)}{\mathcal{L}(\hat{n}_{\mathrm{s}})}
ight] imes \mathrm{sign}(\hat{n}_{\mathrm{s}})$$

A time integrated search

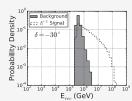
$$S_i = S_i(|\vec{x}_i - \vec{x}_s|, \sigma_i) \mathcal{E}_i(E_i, \delta_i, \gamma)$$

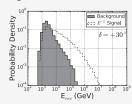
where

$$S_i = \frac{1}{2\pi\sigma_i} e^{-\frac{|\vec{x}_i - \vec{x}_s|^2}{2\sigma_i^2}}$$

The energy dependence takes into account that the signal source is assumed to be harder than the background:

- Background: $\frac{dN}{dE} \sim E^{-3.6}$
- Source: $\frac{dN}{dE} \sim E^{-\gamma}$, where γ = 2.0, 2.3, 2.6 ...
- Energy response depends upon declination

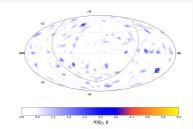




A time integrated search

$$\mathcal{B}_i = rac{1}{\Omega(\delta_i)} \mathcal{E}_i(E_i, \delta_i, \mathrm{ATM}_
u)$$

where $\Omega(\delta_i)$ is the solid angle centered around the declination band.



The local significance is then given as a probability (frequentist approach) of obtaining at least the likelihood ratio found.

Using an ensemble of scrambled data the trial factor (look elsewhere effect) is taken into account. All significances > 10%

Correlation IceCube and Auger/TA

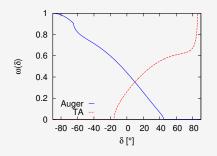
Assume IceCube neutrino's point to sources of Cosmic Rays.

$$\log \mathcal{L}(n_s) = \sum_{i=1}^{N_{\text{Auger}}} \left[\frac{n_s}{N_{CR}} \mathcal{S}_i^{\text{Auger}} + \left(1 - \frac{n_s}{N_{CR}} \right) \mathcal{B}_i^{\text{Auger}} \right] + \sum_{i=1}^{N_{\text{TA}}} \left[\frac{n_s}{N_{CR}} \mathcal{S}_i^{\text{TA}} + \left(1 - \frac{n_s}{N_{CR}} \right) \mathcal{B}_i^{\text{TA}} \right]$$

Signal PDF:

$$\mathcal{S}_{i}^{\mathrm{Auger}}(\vec{r}_{i}, E_{i}) = R_{\mathrm{Auger}}(\delta_{i}) \sum_{j=1}^{N_{\mathrm{src}}} S_{j}(\vec{r}_{i}, \sigma(E_{i}))$$

Correlation IceCube and Auger/TA



$$S_{j} = \frac{1}{2\pi\sigma_{i}}e^{-\frac{|\vec{r}_{i} - \vec{s}_{s}|^{2}}{2\sigma_{i}^{2}}}$$

$$\sigma_{i}^{2} = \sigma_{\mathrm{Auger_{T}A}}^{2} + \sigma_{\mathrm{MD}}^{2}(E_{i})$$

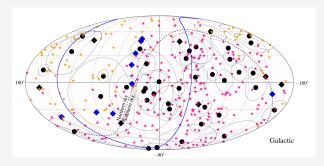
$$\sigma_{\mathrm{MD}}(E) = D \times 100/E$$

 $R_{\text{Auger,TA}}(\delta_i)$

Background likelihood: follows exposure of Auger or TA. Perform likelihood ratio test as before.

Auger Correlation The TA Excess The Li-Ma Significance Local and Global Significance local Significance Conclusion

Result Correlation IceCube and Auger/TA



		High-ene	rgy tracks	High-energy cascades			
D	$n_{\rm s}$	TS	pre-trial p -value	$n_{\rm s}$	TS	pre-trial p -value	
3°	4.2	0.6	0.22	53.7	8.21	2.1×10^{-3}	
6°	0.5	2.7×10^{-3}	0.48	85.7	11.99	2.7×10^{-4}	
9°	0	0	under-fluctuation	106.1	11.32	3.8×10^{-4}	

Conclusion

- Li-Ma significance used to calculate local probability
 - · when background estimated from data
- Many datasets generated in order to assess global probability
 - Frequentist approach to probability
- Data volume grows linearly, truly blind data is still to come
 - prescription approach cannot be too strict