
Likelihoods for distributions - summary


•  Bayesian inference unchanged!
 !
à simply insert L of distribution to calculate P(H|data)




•  Frequentist inference procedure modified"

"
à Pure P(data|hypo) not useful for non-counting data"
à Order all possible data with a (LR) test statistic in ‘extremity’"
à Quote p(data|hypo) as ‘p-value’ for hypothesis"
    Probability to obtain observed data, or more extreme, is X%   
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‘Probability to obtain 13 or more 4-lepton events"
under the no-Higgs hypothesis is 10-7’"


‘Probability to obtain 13 or more 4-lepton events"
under the SM Higgs hypothesis is 50%’




The likelihood principle


•  Note that ‘ordering procedure’ introduced by test statistic "
also has a profound implication on interpretation


•  Bayesian inference only uses the Likelihood of the observed data


•  While the observed Likelihood Ratio also "
only uses likelihood of observed data."





•  Distribution f(λ|N), and thus p-value, also uses likelihood of 

non-observed outcomes (in fact Likelihood of every possible 
outcome is used)"
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Likelihood Principle


•  In Bayesian methods and likelihood-ratio based methods, the 
probability (density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other data are 
not used!


•  In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.


•  This difference is captured by the Likelihood Principle*: "
"
If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.
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Generalizing to continuous distributions


•  Can generalize likelihood to described continuous distributions


•  Probability model becomes a probability density model

–  Integral of probability density model over full space of observable is always 1 "

(just like sum of bins of a probability model is always 1)

–  Integral of p.d.f. over a range of observable results in a probability


•  Probability density models have (in principle) more analyzing power

–  But relies on your ability to formulate an analytical model (e.g. hard at LHC)
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Generalizing to multiple dimensions


•  Can also generalize likelihood models to distributions in multiple 
observables


•  Neither generalization (binnedàcontinuous, oneàmultiple 
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 
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The Likelihood Ratio test statistic as tool for event selection


•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem


•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value"
tomorrow now explore properties ‘cut on λ’ as basis of (optimal) 
event selection! Wouter Verkerke, NIKHEF


λ(!x, !y, !z,...) = L(
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L(!x, !y, !z,... |Hb )



The distribution of the test statistic


•  Distribution of a test statistic is generally not known

•  Use toy MC approach to approximate distribution


–  Generate many toy datasets N under Hb and Hs+b"
and evaluate λ(N) for each dataset
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Intermezzo – Generating toy data


•  Two approaches to obtaining simulated data

•  First approach is "

‘Physics Monte Carlo Chain’, "
described earlier


–  Time consuming, but"
injects detailed knowledge"
about physics, detector,"
output is full collision"
information, and relation"
to underlying theory details


•  Alternative approach is"
sample sampling the"
probability model ‘toy MC’


–  Fast (generally), only requires access to probability model

–  Can only produce datasets with observables that are described by the 

probability model à Sufficient to study distribution of test statistics
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How do you efficiently generate a toy dataset from a probability model?


•  Simplest method is accept/reject sampling"



1)  Determine maximum of function fmax


2)  Throw random number x

3)  Throw another random number y

4)  If y<f(x)/fmax keep x, "

otherwise return to step 2)"
"
"



–  PRO: Easy, always works

–  CON: It can be inefficient if function "

         is strongly peaked."
         Finding maximum empirically "
         through random sampling can"
         be lengthy in >2 dimensions
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How do you efficiently generate a toy dataset from a probability model?


•  Simplest method is accept/reject sampling"



1)  Determine maximum of function fmax


2)  Throw random number x

3)  Throw another random number y

4)  If y<f(x)/fmax keep x, "

otherwise return to step 2)"
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–  PRO: Easy, always works

–  CON: It can be inefficient if function "

         is strongly peaked."
         Finding maximum empirically "
         through random sampling can"
         be lengthy in >2 dimensions
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Toy MC generation – Inversion method


•  Fastest: function inversion"


1)  Given f(x) find inverted function F(x) "

so that f( F(x) ) = x

2)  Throw uniform random number x

3)  Return F(x)"

"
"
"



–  PRO: Maximally efficient

–  CON: Only works for invertible functions


Take –log(x) 
x 

-ln(x) 

Exponential 
distribution 
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Toy MC Generation – importance sampling


•  Hybrid: Importance sampling"


1)  Find ‘envelope function’ g(x) "

that is invertible into G(x)"
and that  fulfills g(x)>=f(x) "
for all x


2)  Generate random number x "
from G using inversion method


3)  Throw random number ‘y’

4)  If y<f(x)/g(x) keep x, "

otherwise return to step 2"
"
"
"



–  PRO: Faster than plain accept/reject sampling"
        Function does not need to be invertible


–  CON: Must be able to find invertible envelope function


G(x) 

y 

g(x) 

f(x) 



Toy MC Generation – importance sampling in >1D


•  General algorithms exists that can construct empirical envelope 
function 


–  Divide observable space recursively into smaller boxes and take uniform 
distribution in each box


–  Example shown below from FOAM algorithm
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Toy MC Generation – importance sampling in >1D


•  For binned distributions, can generate content of each bin on toy 
dataset independently, using a Poisson process


•  Note that efficient generation of Poisson random number relies on 
combination of importance sampling (for small μ, using 
exponential envelope, for large μ using Cauchy distribution)   
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Roadmap for this course


•  Start with basics, gradually build up to complexity of "



Statistical tests with simple hypotheses for counting data 


Statistical tests with simple hypotheses for distributions 


Hypothesis testing as basis for event selection


Composite hypotheses (with parameters) for distributions 


“What do we mean"
with probabilities”


“p-values”


“Optimal event selection & "
machine learning”


“Confidence intervals, "
Maximum Likelihood”


“Fitting the background”
Statistical inference with nuisance parameters


“Sideband fits and "
systematic uncertainties”
Response functions and subsidiary measurements




HEP workflow versus statistical concepts


MC Simulated 
Events (sig,bkg)


All available "
“real data”


Event 
selection 
(cuts, NN, 

BDT)


Final Event 
Selection (data)


Final Event 
Selection (MC)


Helps"
to define"
selection


Statistical"
Inference


L(x |Hi ) xobs

λ(x) ≡ L(x |Hs+b )
L(x |Hb )

>α

p0 (x |Hi ) = f (λ |Hi )
λobs

∞

∫

P(Hs+b | x) =
L(x |Hs+b )P(Hs+b )

L(x |Hs+b )P(Hs+b )+ L(x |Hb )P(Hb )

“Likelihood”


“Likelihood Ratio”


“p-value from Likelihood Ratio test statistic”


“Bayesian posterior probability”




The Likelihood Ratio test statistic as tool for event selection


•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem


•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value"
tomorrow now explore properties ‘cut on λ’ as basis of (optimal) 
event selection! Wouter Verkerke, NIKHEF
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Event selection


•  The event selection problem:

–  Input: Two classes of events “signal” and “background”

–  Output: Two categories of events “selected” and “rejected”


•  Goal: select as many signal events as possible,"
         reject as many background events as possible"



•  Note that optimization goal as stated is ambiguous. 

–  But can choose a well-defined by optimization goal by e.g. fixing desired 

background acceptance rate, and then choose procedure that has highest 
signal acceptance."



•  Relates to “classical hypothesis testing”

–  Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

–  Here null = background, alternate = signal
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Terminology of classical hypothesis testing


•  Definition of terms

–  Rate of type-I error = α
–  Rate of type-II error = β
–  Power of test is 1-β�

�

•  Treat hypotheses "
asymmetrically 


–  Null hypo is usually special à Fix rate of type-I error

–  Criminal convictions: Fix rate of unjust convictions 

–  Higgs discovery: Fix rate of false discovery

–  Event selection: Fix rate of background that is accepted


•  Now can define a well stated goal for optimal testing

–  Maximize the power of test (minimized rate of type-II error) for given α
–  Event selection: Maximize fraction of signal accepted
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The Neyman-Pearson lemma


•  In 1932-1938 Neyman and Pearson developed a "
theory in which one must consider competing hypotheses


–  Null hypothesis (H0) = Background only

–  Alternate hypotheses (H1) = e.g. Signal + Background


    and proved that

•  The region W that minimizes the rate of the type-II error (not 

reporting true discovery) is a contour of the Likelihood Ratio


•  Any other region of the same size will have less power
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The Neyman-Pearson lemma


•  Example of application of NP-lemma with two observables"





•  Cut-off value c controls type-I error rate (‘size’ = bkg rate)"

Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff. 

•  So why don’t we always do this? (instead of training neural 

networks, boosted decision trees etc)


Wouter Verkerke, NIKHEF


x

y
 y


x


f(x,y|Hs)
 f(x,y|Hb)

f(x,y|Hs)"

f(x,y|Hs+b)"





>c




Why Neyman-Pearson doesn’t always help


•  The problem is that we usually don’t have explicit formulae for the 
pdfs


•  Instead we may have Monte Carlo samples for signal and  
background processes


–  Difficult to reconstruct analytical distributions of pdfs from MC samples, 
especially if number of dimensions is large


•  If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,


–  But in such cases one can also forego event selection and go straight to 
hypothesis testing / paramater estimation with all events
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Approximation of true f(x|s)


Approximation of true f(x|b)




Hypothesis testing with a large number of observables


•  When number of observables is large follow different strategy

•  Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 

approximate decision boundary with an empirical parametric form 
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Empirical parametric forms of decision boundaries


•  Can in principle choose any type of Ansatz parametric shape"
"
"
"
"
"
"
 �
�
�

•  Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)


•  Choice of desired type-I error rate (selected background rate), can 
be set later by choosing appropriate cut on Ansatz test statistic.


accept 
H0 

H1 

accept 
H0 

H1 

accept 
H0 

H1 

Rectangular cut Linear cut Non-linear cut 

)()()( iijj cxcxxt −−= θθ iijj xaxaxt ⋅+⋅=)( ...)( ++⋅= xAxxaxt !!!!
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The simplest Ansatz – A linear disciminant


•  A linear discriminant constructs t(x) "
from a  linear combination of the variables xi


–  A cut on t(x) results in a linear decision plane in x-space"



•  What is optimal choice of direction vector a?

•  Solution provided by the Fisher – The Fisher discriminant


"



t(!x) = aixi
i=1

N

∑ =
!a ⋅ !x

R.A. Fisher 
Ann. Eugen. 7(1936) 179. ( ) xVxF T

BS
!!!! 1)( −−= µµ

Mean values in "
xi for sig,bkg


Inverse of variance matrix"
of signal/background"
(assumed to be the same)


a!

accept 
H0 

H1 



The simplest Ansatz – A linear disciminant


•  Operation advantage of Fisher discrimant is that test statistic 
parameters can be calculated (no iterative estimation is required)"



•  Fisher discriminant is optimal test statistic (i.e. maps to Neyman 
Pearson Likelihood Ratio) for case where both hypotheses are 
multivariate Gaussian distributions with the same variance, but 
diffferent means


Wouter Verkerke, NIKHEF
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R.A. Fisher 
Ann. Eugen. 7(1936) 179. ( ) xVxF T

BS
!!!! 1)( −−= µµ

Mean values in "
xi for sig,bkg


Inverse of variance matrix"
of signal/background"
(assumed to be the same)


a!

f (x | s) =Gauss(!x − !µs,V )
f (x | b) =Gauss(!x − !µb,V )

Multivariate Gaussian distributions  
with different means but same width  
for signal and background 



The simplest Ansatz – A linear disciminant


•  How the Fisher discriminant follows from the LR test statistic




•  Generalization for multidimensional Gaussian distributions


•  Note that since we took -log of λ, F(x) is not signal probability,"
but we can trivially recover this
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Example of Fisher discriminant use in HEP


•  The “CLEO” Fisher discriminant

–  Goal: distinguish between "

e+e- à Y4s à bb and uu,dd,ss,cc


–  Method: Measure energy flow"
in 9 concentric cones around "
direction of B candidate"
"



F(x)


Energy flow "
in bb


Energy flow "
in u,d,s,c


1

2

3


4

5


6
7
8
9


Cone"
Energy"
flows


1
 2
 3


4
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Non-linear test statistics


•  In most real-life HEP applications signal and background are not 
multi-variate Gaussian distributions with different means


•  Will need more complex Ansatz shapes than Fisher discriminant

•  Loose ability analytically calculate "

parameters of Ansatz model from "
Likelihood Ratio test statistic "
(as was done for Fisher)


•  Choose an Ansatz shapes with "
tunable parameters


–  Artificial Neural Networks

–  Decision Trees

–  Support Vector Machines

–  Rule Ensembles


•  Need numeric procedure to estimate Ansatz parameters à 
Machine learning or Bayesian Learning
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Machine Learning – General Principles


•  Given a Ansatz parametric test statistic T(x|θ), quantify ‘risk’ due 
‘loss of performance’ due to misclassifications by T as follows




•  Practical issue: since f(x|s,b) not analytically available, cannot 

evaluate risk function. Solution à Substitute risk with ‘empirical 
risk’ which substitutes integral with Monte Carlo approximation





R(θ ) = T (!x |θ )− 0( )2 f (
!x | b)d!x∫ + T (!x |θ )−1( )2 f (

!x | s)d!x∫
Target value of T for "
background classification


Target value  of T"
for signal classification


Loss function (~ log of Gaussian Likelihood) 


Risk function 


E(θ ) = 1
Nb

T (!xi |θ )− 0( )2
D(x|b)
∑ +

1
Ns

T (!xi |θ )−1( )2
D(x|s)
∑

xi is a set of points "
sampled from f(x|b)


xi is a set of points "
sampled from f(x|s)


Empirical Risk "
function 




Machine Learning – General Principles


•  Minimization of empirical risk E(θ) can be performed with 
numerical methods (many tools are available, e.g. TMVA)


•  But approximation of empirical risk w.r.t analytical risk"
introduces possibility for ‘overtraining’: "
"
If MC samples for signal and background are small, "
and number of parameters θ, one can always reduce empirical 
risk to zero (‘perfect selection’)"
"
(Conceptually similar to χ2 fit : if you fit a 10th order polynomial to 
10 points – you will always perfectly describe the data. You will 
however not perfectly describe an independent dataset sampled 
from the same parent distribution)


•  Even if empirical risk is not reduced to zero by training, it may still 
be smaller than true risk à Control effect by evaluating empirical 
risk also on independent validation sample during minimization."
If ER on samples start to diverge, stop minimization
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Bayesian Learning – General principles


•  Can also applied Bayesian methodology to learning process of 
decision boundaries


•  Given a dataset D(x,y) and a Ansatz model with parameters w,"
aim is to estimate parameters w
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P(w) = posterior density on parameters of discriminant


Training data"
x: inputs"
y: class label  "
(S/B) typically


P(w | !x, y) = L(
!x, y |w)P(w)
P(!x, y)

=
L(y |w, !x)L(x |w)P(w)

L(y |w, !x)dwL(!x)∫

=
L(y |w, !x)P(w)
L(y |w, !x)dwL(!x)∫

Likelihood of the data under hypothesis w


L(a,b)=L(a|b)L(b)


L(x|w)=1 since"
input observables"
independent of model




Bayesian Learning – General principles


•  Inserting a binomial likelihood "
function to model classification"
the classification problem


•  The parameters w are thus"
estimated  from the Bayesian "
posteriors densities


–  No iterative minimization, but Note that integrals over ‘w-space’ can usually 
only be performed numerically and if w contains many parameters, this is 
computationally challenging


•  If class of function T(x,w) is large enough it will contain a"
function T(x,w*) that represents the true minimum in E(w)


–  I.e. T(x,w*) is the Bayesian equivalent of of Frequentist TS that is NP L ratio

–  In that case the test statistic is


P(w | !x, y) = L(y |w, !x)P(w)
L(y |w, !x)dwL(!x)∫

L(y | x,w) = T (xi,w)
i
∏

y
1−T (xi,w)[ ]1−y

T (x,w*) = yL(y | x)dy∫

= L(y =1| x) = L(x | y =1)P(y =1)
L(x | y = 0)P(y = 0)+ L(x | y =1)P(y =1)

L(y | x,w) = T (xi,w)
i
∏

y
1−T (xi,w)[ ]1−y

With y=0,1 only
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Machine/Bayesian learning – Non-linear Ansatz functions


•  Artificial Neural Network is one of the most popular non-linear 
ansatz forms. In it simplest incarnation the classifier function is




•  This formula corresponds to the ‘single layer perceptron’

–  Visualization of single layer network topology


⎟
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s(t) is the activation function,

usually a logistic sigmoid


te
ts −+
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xN


N(x)

Since the activation function s(t) is monotonic, "

a single layer N(x) is equivalent "
to the Fisher discriminant F(x)




Neural networks – general structure


•  The single layer model and easily be generalized "
to a multilayer perceptron"
"
"
"
"
"
"
"
"
"
"
"



–  Easy to generalize to arbitrary number of layers

–  Feed-forward net: values of a node depend only on earlier layers (usually only 

on preceding layer) ‘the network architecture’

–  More nodes bring N(x) allow it to be closer to optimal (Neyman Pearson / 

Bayesian posterior) but with much more parameters to be determined
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xN
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Neural networks – training example


N(x) 

Signal MC Output 

Background MC Output 

cosΘH
B cosΘ*B cosΘthr 

cosΘH
D Fisher Qhemi

Diff 

ln|DOCAK| QBΣQob
K m(Kl) 

Signal 

Signal 

Signal 

Background 

Background 

Background 

Input Variables (9) Output Variables (1) 



Practical aspects of machine learning


•  Choose input variables sensibly

–  Don’t include badly understood observables (such as #tracks/evt),"

variables that are not expected carry useful information

–  Generally: “Garbage in = Garbage out”


•  Traditional Machine learning provides no guidance of useful 
complexity of test statistic (e.g. NN topology, layers)


–  Usually better to start simple and gradually increase complexity and see how 
that pays off


•  Bayesian learning can (in principle) provide guidance on model 
complexity through Bayesian model selection


–  Bayes factors automatically includes a penalty for including too much model 
structure.


–  But availability of Bayesian model selection depends in practice on the 
software that you use.
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K =
P(D |H1)
P(D |H2 )

=
L(D |θ1,H1)P(θ2 |H1)dθ2∫
L(D |θ2,H2 )P(θ2 |H2 )dθ2∫



Practical aspects of machine learning


•  Don’t make the learning problem "
unnecessarily difficult for the machine


•  E.g. remove strong correlation with "
explicit decorrelation before learning step


–  Can use Principle Component Analysis

–  Or Cholesky decomposition"

(rotate with square-root of covariance matrix) "



•  Also: remember that for 2-class problem (sig/bkg) that each have"
multivariate Gaussian distributions with different means,"
the optimal discriminant is known analytically


–  Fisher discriminant is analytical solution. NN solution reduces to single-layer 
perceptron


•  Thus, you can help your machine by transforming your inputs in a 
form as close as possible to the Gaussian form by transforming 
your input observables
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Gaussianization of input observables


•  You can transform any distribution in a Gaussian distribution in 
two steps


•  1 – Probability integral transform"
"
"
"
"
      turns any distribution f(x) into a flat distribution in y(x)


•  2 – Inverse error function"
"
"
"
"
      turns flat distribution into a Gaussian distribution


•  Note that you can make either signal or background Gaussian,"
but usually not both
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y(x) = f (x ' |H )
−∞

x

∫ dx '

“…seems likely to be one of the most 
fruitful conceptions introduced into 
statistical theory in the last few years” 
−Egon Pearson (1938)  

erf x( ) = 2
π

e−t
2

dt
0

x

∫xGauss  = 2 ⋅erf−1 2x flat −1( )  



A very different type of Ansatz - Decision Trees


•  A Decision Tree encodes sequential rectangular cuts

–  But with a lot of underlying theory on training and optimization

–  Machine-learning technique, widely used in social sciences

–  L. Breiman et al., “Classification and Regression Trees” (1984)"

"
"
"
"



•  Basic principle

–  Extend cut-based selection

–  Try not to rule out events failing"

a particular criterion

–  Keep events rejected by one criterion "

and see whether other criteria could "
help classify them properly"
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