

Anthony Bwembya

Radboud University Nijmegen

abwembya@science.ru.nl

About Me

- BSc. University of Zambia (Zambia)
- MSc. National Research Nuclear University (Russia)
- PHD. Radboud University (NL)

Radio Interferometry for cosmic ray particle identification:

• Beamforming through the sum of the coherent radio signals to determine the depth of the shower maximum (X_{max}) .

 Implementation of radio interferometry at the new/improved Auger Prime Observatory.

Detecting neutrinos on the AUGER radio upgrade

- 3 main "classes" of events
 - τ s from the mountains
 - Downgoing (from ν_{all} CC and NC interactions in the atmosphere)
 - Upgoing τ s
- Shower geometry depends on where the interaction/decay occurs
- ullet AUGER-RD: Large antenna spacing and low gain at high heta
 - Problem: Large spacing favors high θ , gains favor low θ

Example neutrino events at $\theta = 85^{\circ}$ using RDSim

- RDSim: fast and comprehensive simulation based on a superposition toymodel: Estimate what is possibly detectable
 - Downgoing CC and NC events.
 - Mountain τ events
 - Can propagate τ s before decay.
 - Simple radio only trigger with simplified antenna gain

Questions?

Where from:

Commissioning and optical simulations for the Advanced Virgo gravitational wave detector

What now:

Postdoc at VU Amsterdam-Nikhef, developing the Omnisens experiment

Omnisens: Reimagining seismic isolation for future generations of gravitational-wave detectors:

Image credit: C M Mow-Lowry and D Martynov 2019 Class. Quantum Grav. 36 245006

MACHINE LEARNING THE UNIVERSE

OLEG SAVCHENKO

1st year PhD student at GRAPPA

- Did my bachelor's in Kyiv, Ukraine, and then master's in Cambridge, UK
- Background in theoretical physics
- Worked on inflationary cosmology in undergrad
- Got interested in machine learning, and that's how I ended up doing my PhD!

Supervisor
CHRISTOPH WENIGER

I WORK ON:

- Applications of Machine Learning to Cosmology
- Simulation-based Inference
- Statistical Reconstruction of Cosmological Initial Conditions
- Cosmological Simulations
- Graph Neural Nets

Right now, I collaborate a lot with a postdoc from my group, Guillermo Abellán.

Would be happy to talk to anyone interested in these topics! Please contact me at **o.savchenko@uva.nl**

CAN 2023 Flash talk
Krishna Nivedita

The Radar Echo Telescope

Detection of Ultra high energy neutrinos

Uses radar reflections for detection

TEST BED EXPERIMENT: RADAR ECHO TELESCOPE FOR COSMIC RAYS

RET-CR Concept

Thank you!

Cosmic Particles - Charles Timmermans

Now: AugerPrime

Cosmic Particles - Charles Timmermans

Now: AugerPrime

Cosmic Particles - Charles Timmermans

Future: GRAND

