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We detect a GW signal… with no electromagnetic counterpart

How do we decide if it’s a Neutron star or a Black hole?

What role does ℏ play in this?



The answer is the Mass

1) White dwarfs: fermions + Newton ⟶ Chandrasekhar

2) Neutron stars: fermions + GR ⟶  TOV limit

3) Ultra Compact Objects:   

    We don’t know equation of state of QCD

    And classical GR seems to forbid them:

• Bounds on compactness: Buchdahl’s theorem

• Gravitational instability of stable light rings

R < 3GM

This talk:  Does QFTCS affect 3) ?



Buchdahl’s Theorem      [Buchdahl ‘59]

Static, spherically symmetric isotropic perfect fluid

ds2 = �f(r)dt2 + h(r)dr2 + r2d⌦2

Tµ
⌫ = diag(�⇢, p, p, p)

Then, assuming nothing about the EOS but only

An absolute upper bound on compactness for stars
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Light rings

‘Photon sphere’: light can travel in circles ⟶ come in pairs

Inner: minimum ⟶ gravitational instabilities [Keir ’14, Cardoso et al ‘14]
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R > 3M

R = 3M

Stars are unstable if R < 3GM

R < 3M



‘Schwarzschild star’

Solvable model with both features: uniform density star

Saturates Buchdahl limit and has two Light rings 

Background geometry: Schwarzschild interior / vacuum exterior.

Unrealistic, but it’s the textbook example of  TOV equations
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Wave equation

Massless scalar field ⇤� = 0
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If the potential traps classical waves, it should  
also support vacuum wavefunctions!

quasi-bound states                           
Chandrasekhar-Ferrari ´92



QFT in curved spacetime ‘Bible’

• Black Holes

• Cosmology

• … no mention of stars!

Let’s do this.



QFT in curved spacetime

Semi-classical approximation

Rµ⌫ � 1

2
gµ⌫R = 8⇡G

⇣
Tµ⌫ + hT̂µ⌫i

⌘

hT̂µ
µi =

1

(4⇡)2
[cF � aG � d⇤R]

fixed by the theoryc, a > 0 scheme dependentd

Is there some generic feature of             for compact objects?

Conformally coupled quantum fields in the vacuum 

hT̂µ⌫i



But if in addition, the metric is conformally flat

The uniform density star conformally flat! (theorem)

Conclusion: we know             exactly on this metric.hT̂µ⌫i

[Buchdahl ‘70]
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 Classical            in the Buchdahl limit

Consider the classical fluid in the regime

R = (9/4 + ✏)GM , ✏ ! 0 .

The inner Light ring moves to the center, and the curvature 
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central density is finite but the pressure diverges



hT̂µ
⌫ i = diag(�h⇢̂i, hp̂ri, hp̂✓i, hp̂✓i)

Inner light ring fall-off:

h⇢̂(rin)i
h⇢̂(0)i ⇠ 10�1

             in the Buchdahl limithT̂µ⌫i
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The quantum terms diverge faster than classical

not isotropic

quantum trapping.



Summary

• Compact objects in GR and some no-go theorems

• Schwarzschild star as background exhibiting these features

• From classical waves to QFT

• Inside inner light ring:

hT̂µ⌫i Tµ⌫grows faster than
R
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• What is the backreaction?

quantum backreaction cannot be neglected before a horizon


