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We detect a GWV signal... with no electromagnetic counterpart

How do we decide if it’s a Neutron star or a Black hole?

What role does h play in this?



The answer is the Mass

|) White dwarfs: fermions + Newton — Chandrasekhar

2) Neutron stars: fermions + GR — TOV limit
3) Ultra Compact Objects: R < 3GM
We don’t know equation of state of QCD
And classical GR seems to forbid them:
e Bounds on compactness: Buchdahl’s theorem

e Gravitational instability of stable light rings

This talk: Does QFTCS affect 3) ?
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Buchdahl’s Theorem
Static, spherically symmetric isotropic perfect fluid
T}, = diag(—p,p, p,p)
ds® = — f(r)dt* + h(r)dr* + r*dQ?
Then, assuming nothing about the EOS but only
p>0, 0p<L0, G, =8rGT,,

R 9
BP9
= GM = 1 :

An absolute upper bound on compactness for stars



Light rings

‘Photon sphere’: light can travel in circles — come in pairs

fhit4+V(r)=FE* |, V=—"
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Inner: minimum — gravitational instabilities

Stars are unstable if R < 3GM



‘Schwarzschild star’

Solvable model with both features: uniform density star
p = const ds* = —f(r)dt* + h(r)dr® + r*dQ’

Unrealistic, but it’s the textbook example of TOV equations
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Saturates Buchdahl limit and has two Light rings

Background geometry: Schwarzschild interior / vacuum exterior.



Wave equation

Massless scalar field d—( H — u(r) Y (0, p)e it
r

SR utViu=wtu T /A

quasi-bound states

If the potential traps classical waves, it should
also support vacuum wavefunctions!



QFT in curved spacetime ‘Bible’

e Black Holes

* Cosmology

* ... no mention of stars!

Let’s do this.



QFT in curved spacetime

Semi-classical approximation

1 )
Ryw = 59uR = 87G (TW n <TW>)
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Is there some generic feature of (1),,) for compact objects?

Conformally coupled quantum fields in the vacuum

1
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c,a > (0 fixed by the theory d scheme dependent



But if in addition, the metric is conformally flat
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The uniform density star conformally flat! (theorem)

Now, although (0.13) 1s to be found in almost
all books on the general theory of relativity and
1s often discussed in considerable detail, it is re-
markable that no mention 1s made of the fact that
the interior metric (0.13) is conformally flat.
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Conclusion: we know (T7,,,) exactly on this metric.
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[Buchdahl ‘70]




Classical 7, in the Buchdahl limit

Consider the classical fluid in the regime

R=(9/44¢)GM, e — 0.
The inner Light ring moves to the center, and the curvature
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R(0) ~ ~
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central density is finite but the pressure diverges
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(T,,,) in the Buchdahl limit

A

<T5> — diag(_<:§>v <ﬁfr‘>7 <ﬁ9>7 <]59>) not isotropic

Inner light ring fall-off: 0.1 -
—\P
(Pr)
<15§,rin)> ~ 10—1 0-05° 1 o)
(P(0))

quantum trapping.
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The quantum terms diverge faster than classical




Summary

* Compact objects in GR and some no-go theorems
* Schwarzschild star as background exhibiting these features
* From classical waves to QFT

* Inside inner light ring:

A R
T,, faster th 1 S
(T,,,) grows faster than y eI,

> 2
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quantum backreaction cannot be neglected before a horizon

* What is the backreaction?



