Probing the secrets of neutrinos
with the DUNE experiment

The Deep Underground Neutrino Experiment




DUNE physics goals

1. Make precise measurements of the oscillation parameters
2. Resolve the neutrino mass hierarchy

3. Determine whether CP is violated in neutrinos and measure

Ocp
4. Check the unitarity of the PMNS matrix

5. Be ready to detect low-energy neutrinos from a supernova
6. Other beyond the standard model physics
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DEEP UNDERGROUND
NEUTRINO EXPERIMENT

Sanford Underground
Research Facility
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World’s most intense neutrino beam
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v flux/m?/GeV/10°" POT at 1300 km

World’s most intense neutrino beam
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Moveable near detector
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Large LArTPC far detector

-

Detector electronics

Each module will be filled with 17,000 tons

of argon and cooled to minus 184°C
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Liquid argon neutrino detection

Scintillation light
VUW
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Image like event reconstruction

DUNE:ProtoDUNE-SP Run 5387 Event 90017
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CP-violation measurements in DUNE

Ve V1
Yu | =Upmns | V2
VT V3

1 0 0 C13 0 5136_i6 C12 S12 0
Upyns = 0 €23 523 O 1 0 —S12 €12 0O
0 _523 C23 —513€l8 0 C13 0 0 1
_ _ > : . ,Am?%, . Am%,
P(vu > V) — P(VH — V) = —16515C12513C73523C23 sin(8) sin( g Lsin(——

We know the mixing angles and mass differences
We can measure P(v” - ve) — P(Vﬂ - 176)
So, we can calculate §.p?

L) sin(

Am3g

4E

L)
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Measuring d.p - matter effect

NO! We are not in vacuum! In matter
P(ve - vﬂ) * P(Ve - 17”) even if 0cp =0
because matter is not CP-symmetric!

P(ve — vﬂ) — P(Ve — 17”) has three terms in
matter (see backup for formula)

(ref: https://arxiv.org/pdf/hep-ph/9703351.pdf)
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Measuring d.p - matter effect

M 015 T T T T ;

NO! We are not in vacuum! In matter - ' .
P(ve — Vu) * P(Ve — 17”) even if 0cp =0 ~ 01~ e
because matter is not CP-symmetric! T oosbt E
S = — -
o B i
P(v -V ) - P(V -V ) has three terms in - - .
e 2 e 2 T -0.05 —— Term 1 (matter) —
matter (see backup for formula) = F — Term 2 (matte) -
Q- 0.1 Term 3 (CP, §, =-m/2)
- ——— Term 3 (CP, 8., = +7/2) -

15— ————

Energy (GeV)
(ref: https://arxiv.org/pdf/hep-ph/9703351.pdf)
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Measuring d.p - matter effect

P(ve - Vu) — P(Ve - 17”) has three termsin 1 s

Term 1 (matter)

0.15 .
NO! We are not in vacuum! In matter oil “ =
P(ve — Vu) 7+ P(Ve — 17”) evenifo.p =0 = : :
because matter is not CP-symmetric! Ti 0.05 .
& | :
T o .
[ .

matter (see backup for formula) Z Term 2 (matter)
o
-0.1 Term 3 (CP, 5, = -n/2)
| Term 3 (CP, 5, = +1/2)
T N B S S R R S R
-0.150 > 4 5
Energy (GeV)
(ref: https://arxiv.org/pdf/hep-ph/9703351.pdf)
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DUNE has good CP violation sensitivity

DUNE CPV Sensitivity
All Systematics
Normal Ordering

Phase Il + ACE
50% of &, values
e 75% of 8, values

Exact timeline depends on the
timing of the detector updates!
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DUNE is unigue

Due to its long baseline of 1300 km, neutrino oscillations between the DUNE near
and far detectors will be significantly altered by matter effects

DUNE will use an on-axis v, and v, beam with a broad range of energies including

the first and second oscillation maxima

These features will enable DUNE to resolve the neutrino mass hierarchy and
perform precision measurements of the oscillation parameters, search for CP
violation in neutrinos and measure d.p in a single experiment. DUNE will also test

the unitarity of the PMNS matrix

DUNE is sensitive to the v, component of a supernova neutrino flux
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Backup slides
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Matter effect

164 Am?2. L
P(Ve - Vu) - P(Ve - Vu) ~ sin’ ( = >C123S1235223(1 — 25123)

A2m§1 4E
2AL  [(Am2,L
———sin T) C13573593 (1 — 2573)
Amf,L : mis
-8 T 51n(5)51n2( 15 L | 513¢%3C3523C12512

A = 2V2 Gen, E

e Experimental strategies:
1. Keep L small, then the matter effect is small and can be neglected
e High flux at a single energy
2. Make L large and measure the matter effect
* Need multiple energies to disentangle matter effect and CP-violation
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Matter effect

. 164 [(AmL
P(ve - V,LL) — P(Ve — V,LL) =~ A 2 Slnz < 4E1 )C12351235223(1 — 25123)
sz
24L  [(AmZ,
jc12351235%3(1 — 25123)
2

Am
: : 13
sm(5)sm2( AE L ) $13€13C23523C12512

———sin| ——
AmZ,L
2E

—8

A = 2V2 Gen, E

e Experimental strategies:
1. Keep L small, then the matter effect is small and can be neglected Hyper Kamiokande

* High flux at a single energy
2. Make L large and measure the matter effect Y
* Need multiple energies to disentangle matter effect and CP-violation
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DUNE facts

e 120 kt MW yr exposure by 2035

* 40 kt liguid argon

* 1.2 MW beam power upgradeable to 2.4 MW
* 1443 collaborators

* FD caverns excavation now at 65% completion
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ProtoDUNEs at CERN neutrino platform

IR
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Supernovae

DUNE measures SNB v s;

L (10 ergsis)

other exper Iments measure VE

Cooling

Intall | Meutronization {  Accretion
' H

Ve Ve Vy
DUNE 89% 4% 7%
SK 10% 87% 3%
JUNOQO? 1% 72% 27%

'Super-Kamiokande, Astropart. Phys. 81 39-48 (2016)
2Lu, Li, and Zhou, Phys Rev. D 94 023006 (2016)
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Oscillation probability
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CP-violation sensitivity

Sensitivity to determination of mass hierarchy as a function of true value of dcp.
Bands represent range of sensitivity for different values of 023 (NuFit 2016 90% C.L. range).

Significance increases with increasing 6.

613 and Am32 have smaller effect on significance than 0»3.

Normal ordering

30
 DUNE Sensitivity 7 years (staged)
" Normal Ordering )
[ sin*26,, = 0.085 +0.003 10 years (staged)
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Inverted ordering

30
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Inverted Ordering
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13 ® O "
25} ©,,: NuFit 2016 (90% C.L. range) ==**** sin’il,, = 0.587 + 0.042
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Mass hierarchy

Number of neutrino types N = 2.956+0.007*
m,<1.1eV(90% C.L.)*

Flavour eigenstates # mass eigenstates

m,>my
ve Uel
vﬂ = U/,tl
V
T Urq

Uez UeB V1

V
U‘L’Z U‘L’3 3

J

UPMNS

Mixing angles 04,, 8,3, 0,3 and a phase §.p

*R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys.2022, 083C01 (2022)
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Neutrino oscillations

Ve Uer Uegy Upgs V1
Vu | = U,ul U p2 Uu3 V2
Y Upr Uy Ug V3

[ J

UPMNS
1 0 0 C13 0 3138_i5 C12 S12 0
Upmns = 0 €23 S23 o 1 0 <—S12 ciz2 0)
O _523 C23 _513el5 O C13 O 0 1

with s;; = sin(@ij) and ¢;; = cos(0;), 0,3~45° 613~9°,01,~30°
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Open questions in neutrino physics

1.Neutrino mass hierarchy: It is still not known whether the masses of the three known types
of neutrinos (electron, muon, and tau neutrinos) are ordered in a specific way, known as the
"mass hierarchy." This is an important question because it affects the behavior of neutrinos
as they travel through matter and can impact the number of neutrinos detected in
experiments.

2. Neutrino oscillations: Neutrinos are known to oscillate between different types as they travel
through space. However, the exact mechanism behind this phenomenon is not well
understood, and more precise measurements are needed to fully understand it.

3. CP-violation: CP-violation refers to the idea that the laws of physics are not the same if
Barticles are replaced with their antiparticles and left and right are swapped. Neutrinos are
elieved to exhibit CP-violation, but the degree to which they do so is not yet known.

4.Neutrino mass: The mass of neutrinos is still not precisely known, and researchers are
working to determine it more accurately.

5. Sterile neutrinos: In addition to the three known types of neutrinos, there may be additional,
"sterile” neutrinos that do not interact through the weak force. However, the existence of
stecljflle neuérmos has not been confirmed, and their properties, if they do exist, are not well
understood.
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DUNE physics contribution

The primary science program of the LBNF/DUNE experiment focuses on fundamental open questions in neutrino and

astroparticle physics:

* precision measurements of the parameters that governv, - v, and v, - v, oscillations with the goal of

* measuring the charge-parity (CP) violating phase 6., — where a value differing from zero or i would
represent the discovery of CP-violation in the leptonic sector, providing a possible explanation for the matter-
antimatter asymmetry in the universe;

* determining the neutrino mass ordering (the sign of Am? ;; = m?%, - m?,), often referred to as the neutrino
mass hierarchy;

* precision tests of the three-flavor neutrino oscillation paradigm through studies of muon neutrino
disappearance and electron neutrino appearance in both v, and v, beams, including the measurement of the
mixing angle 6,; and the determination of the octant in which this angle lies;

» search for proton decay in several important decay modes, for example p - K+v, where the observation of proton
decay would represent a ground-breaking discovery in physics, providing a portal to Grand Unification of the
forces;

* detection and measurement of the v, flux from a core-collapse supernova within our galaxy, should any occur
during the lifetime of the DUNE experiment.
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Near detector at Fermilab and far detector at
SURF

Sanford Underground
Research Facility

AR
o

CAN symposium 2023 - Marjolein van Nuland-Troost 39



Far detector consists of 2(4) cryostats
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Each cryostat will be filled with 17 kton LAr
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v fluxim¥GeV/1.1<10°'POT at FD
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