

Based on arXiv:2302.08527 / 10.1007/JHEP05(2023)149

Introduction & Motivations

Interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleon/nucleus scattering rates

Introduction & Motivations

Relevance of low-*Q*²**Regions**

In muon-neutrino inelastic scattering, at $E_{\nu} \sim \text{few GeV}$, the total cross-section is determined entirely by the low- Q^2 regions:

Model the low-*Q*²**: Bodek-Yang (BY)**

BY is based on Effective LO Parton Distribution Functions (PDFs) (GRV98LO) with modified scaling variables and K-factors to approximate higher-order QCD corrections:

$f_i^{\text{LO}}(x, Q^2) \longrightarrow f_i^{\text{LO}}(\xi, Q^2), \text{ with}$

Shortcomings of the BY model:

- **Neglect higher-order perturbative QCD calculations** (which can be significant)
- sensitive to **different energy regions**.

$$\xi = \frac{2x(Q^2 + m_f^2 + B)}{2Ax + \left[1 + \sqrt{1 + (2m_N x)^2/Q^2}\right]}$$

O **Obsolete PDF parametrisation** that neglects constraints on proton & nuclear structure in the last 25 years

O Cannot be matched to calculations of high-energy neutrino scattering based on modern PDF and higher-QCD calculations, introducing an unnecessary separation between modelling of neutrino interactions

• Lack of systematic estimate of the uncertainties associated to the predictions $\iff \nexists$ degree of belief

NNSF*v*: **Using state-of-the-art ML and QCD computations**

NNSF*v***: The Approach**

- 0 **functions** using a NN as an unbiased interpolant
- Ο
- Ο calculations

Use available data on neutrino-nucleus scattering to parametrise and determine the inelastic structure

The parametrisation is done in such a way that it converges to the pQCD calculations at large enough Q^2

In the region where neutrino energy is sensitive to large- Q^2 , the parametrisation is replaced by pQCD

NNSF*v*: **Experimental Inputs**

 \mathcal{X}

The datasets include various observables, scattering target, and final state that amounts to 6224 (4184) before (after) the cut.

Ο

- The datasets span a wide range Ο of kinematics. Two different types of **cuts** are applied to the experimental datasets: W^2 and $Q_{\rm max}^2$.
- The resulting determination of Ο neutrino inelastic structure functions are valid for ~12 orders of magnitude in E_{ν} , from ~few GeV to 10^{12} GeV.

Training/Optimisation: observable definition, stopping criteria, etc.

NNSF*v*: Neutrino Structure Function Predictions

Smooth transition between data-driven & pQCD computations with proper uncertainty estimate in whole Q range

NNSF*v*: Interpolation along A

The advantage of parametrising A is that one can generate predictions for nuclei for which direct experimental measurements are not available. To illustrate this we compare two fits in which A = 20 is removed in one.

Phenomenology of Inclusive Neutrino Cross-Sections

NNSF*v*: Inclusive Neutrino-Nucleus Cross-Sections

NNSF*v*: Inclusive Neutrino-Nucleus Cross-Sections

Adopting FOSS Philosophy

NNSF ν is interfaced with the GENIE MC Generator: http://genie-mc.org/

NNSF ν grids are tabulated in the LHAPDF format: https://lhapdf.hepforge.org/index.html

The code is publicly available at the following link: https://github.com/NNPDF/nnusf Documentation along with tutorials are available at: https://nnpdf.github.io/nnusf/

> (Z, A) [target] Low-Q Grid High-Q Grid (1, 2)NNSFnu D lowQ NNSFnu_D_highQ (2, 4)NNSFnu_He_lowQ NNSFnu_He_highQ (3, 6)NNSFnu_Li_lowQ NNSFnu_Li_highQ (4, 9)NNSFnu_Be_lowQ NNSFnu_Be_highQ (6, 12)NNSFnu_C_highQ NNSFnu C lowQ (7, 14)NNSFnu_N_highQ NNSFnu_N_lowQ (8, 16)NNSFnu_O_lowQ NNSFnu_O_highQ (13, 27)NNSFnu_Al_lowQ NNSFnu_Al_highQ (15, 31)NNSFnu_Ea_lowQ NNSFnu_Ea_highQ (20, 40)NNSFnu_Ca_lowQ NNSFnu_Ca_highQ (26, 56)NNSFnu Fe lowQ NNSFnu_Fe_highQ (29, 64)NNSFnu_Cu_lowQ NNSFnu_Cu_highQ (47, 108)NNSFnu_Ag_lowQ NNSFnu_Ag_highQ (50, 119)NNSFnu_Sn_lowQ NNSFnu_Sn_highQ (54, 131)NNSFnu_Xe_highQ NNSFnu_Xe_lowQ (74, 184)NNSFnu_W_lowQ NNSFnu_W_highQ (79, 197)NNSFnu_Au_highQ NNSFnu_Au_lowQ (82, 208)NNSFnu_Pb_highQ NNSFnu_Pb_lowQ

- O Accurate predictions for scattering rate of neutrinonucleus interactions play a crucial role in interpretation of present neutrino experiments
- The low- Q^2 regions contribute to a significant degree to the inclusive neutrino inelastic crosssections
- O State-of-the-art methods relying on Machine Learning provide an unbiased and better predictions for lowenergy neutrino physics
- $\circ_{NNSF\nu}$ predictions for inelastic neutrino structure functions and cross-sections are valid for all energies relevant for neutrino phenomenology and are available as interpolation grids in the LHAPDF format & as an interface with **GENIE**
- **O**Precision QCD and neutrino physics at future experiments will benefit from precision neutrino structure functions

Model the low-*Q*²**: Bodek-Yang**

Bodek-Yang (BY) is based on Effective LO PDFs (GRV98LO) with modified scaling variables and K-factors to approximate higher-order QCD corrections:

$$\xi = \frac{2x(Q^2 + m_f^2 + B)}{2Ax + \left[1 + \sqrt{1 + (2m_N x)^2/Q^2}\right]}$$

O LO predictions can be up to 25% higher wrt NNLO **O NLO** predictions can be up to 20% higher wrt NNLO **O BY** predictions depart from best QCD predictions even at moderate Q

Status of the Yadism Code

NLO	light heavy		
NC	\checkmark	\checkmark	
$\mathbf{C}\mathbf{C}$	\checkmark		
NNLO			
NC	\checkmark	\checkmark	
$\mathbf{C}\mathbf{C}$	\checkmark	tabulated*	
N3LO			
NC	\checkmark	X †	
$\mathbf{C}\mathbf{C}$	\checkmark	X †	

Already available as K-factors [64], now being integrated in the grid format. * † Full calculation not available but an approximated expression can be constructed from partial results [105, 106]. ‡ Calculation available, to be implemented.

https://yadism.readthedocs.io/en/latest/

Overview of the different types and accuracy of the DIS coefficient functions currently implemented in YADISM

Contributions from the Individual Structure Functions

Stability of the Fits

Dataset	Target	Observable	$n_{ m dat}~ m (cuts)$	$\chi^2_{ m exp}$ (wo QCD)	$\chi^2_{ m exp}$ (baseline)
BEBCWA59	No	F_2	$57 \; (39)$	1.673	2.088
	ive	xF_3	57~(32)	0.842	0.771
CCFR	Fo	F_2	128 (82)	1.902	2.292
	ГC	xF_3	128 (82)	0.857	0.946
CDHSW Fe		$[F_2]$	143 (92)	[6.17]	[5.32]
		$[xF_3]$	143~(100)	[22.9]	[11.7]
	${\rm Fe}$	$[F_W]$	$130 \ (95)$	[15.9]	[16.4]
	$d\sigma^{ u}/dx dQ^2$	847~(676)	1.298	1.351	
		$d\sigma^{ar{ u}}/dx dQ^2$	704~(583)	1.139	1.237
CHARM CaCo	$C_{2}C_{2}$	F_2	160 (83)	1.368	1.324
		xF_3	160~(61)	0.721	0.850
CHORUS Pb		$[F_2]$	67~(53)	[63.8]	[38.3]
	Ph	$[xF_3]$	67~(53)	[6.881]	[2.904]
	$d\sigma^{ u}/dx dQ^2$	606 (483)	0.986	1.185	
		$d\sigma^{ar{ u}}/dx dQ^2$	$606 \ (483)$	0.709	0.797
NuTeV Fe		$[F_2]$	78~(50)	[9.854]	[10.41]
	$[xF_3]$	75~(47)	[6.24]	[3.810]	
	$d\sigma^{ u}/dx dQ^2$	$1530 \ (805)$	1.436	1.542	
		$d\sigma^{ar{ u}}/dx dQ^2$	1344~(775)	1.254	1.311
Total			6197 (4089)	1.187	1.287

Experimental & is Theory Correlation Matrix

Matching Predictions along the Q^2 regions

Predictions reproduce the pQCD constraints and are smooth along the entire region of Q^2

Dependence on the Q^2 **cuts**

The choice of where to split the Q^2 regions yield very small differences. The largest differences occur in the extrapolation regions where no experimental data are available.

Predictions for the GLS sum rules

Inclusive Neutrino-Nucleus Cross-Sections

