

Towards Ultra-High-Energy Photon Detection With AugerPrime

Mohamed Ismaiel

Radboud University Ph.D. Candidate

27th Symposium on Astroparticle Physics in the Netherlands 20 June 2023

$p + \gamma_{CMB} \geq p + \pi^0 \rightarrow p + 2\gamma$

GZK Interaction threshold ~ 5×10^{19} eV **The resulting photon energy ~ 1 order of magnitude less than the initial proton**

Pierre Auger Observatory

Year	Approach	Energy [eV]	Zenith angle [deg]
2022 (<u>1</u>)	WCD	> 10 ¹⁹	30 - 60
2022 (<u>2</u>)	WCD infill + FD	> 10 ¹⁷	< 60
2021 (<u>8</u>)	WCD , FD	> 10 ¹⁹	30 - 60
2016 (<u>3</u>)	WCD + FD	> 10 ¹⁸	< 60
2019 (<u>4</u>), 2015 (<u>7</u>)	WCD + FD	> 10 ¹⁹	30 - 60
2008 (<u>5</u>), 2012 (<u>6</u>)	WCD	> 10 ¹⁹	30 - 60

Pierre Auger Observatory's Searches

As almost all searches performed for **Zenith** $< 60^{\circ}$.

The observables used not well defined for horizontal showers \rightarrow Weak WCD signal

No Photon Detected So Far!

• GZK limit ($\sim 10^{19}$ eV) is real with some outlier i.e. heavy nuclei = UHECR not pure protons

• Limits are relatively close to the fluxes expected for photons originating from the GZK effect

Radio In AugerPrime

Characteristic	Advantage compared to AugerPhase1
$\sim 100\%$ duty cycle	More Statistics
Calorimetric energy of the primary particle	Direct measurement for shower's electromagnetic content
Primary mass sensitive	Electron / muon separation with Surface Detector
Efficient for inclined showers	Extends sky coverage

Radio SALLA Antenna measures radio emission between 30-80 MHz

• The atmosphere is transparent to the radio frequencies. Inclined events have a large radio illuminated area, resulting in a higher number of stations capable of recording the radio emissions.

EM component

Hadronic component

Photon

Photon shower footprint:

- Deep Xmax ~ 1000 g/cm^2
- Fewer Muons •
- Slow Development •
- Steeper lateral distribution ullet

- The atmosphere is transparent to the radio frequencies. Inclined events have a large radio ٠ illuminated area, resulting in a higher number of stations capable of recording the radio emissions.
- Only a few WCDs are triggered by the surviving muons that reach the observation level. ٠

luons survived

Radio emission

Basic Photon Search in AugerPrime Using Radio

Basic Photon Search in AugerPrime

• Correlation of the sum of WCD signal with the sum of maximum electric field per event after reconstruction.

Basic Photon Search in AugerPrime

• Correlation of the sum of WCD signal with the sum of maximum electric field per event after reconstruction.

Toward Triggering on Radio Signals For Photons

- We have studied the possibility of implementing a RD trigger.
- Hybrid trigger mainly enhance the trigger of neutral primaries with poor muon content.
- A New Hybrid Trigger RD + WCD \rightarrow 14 × more than trigger on WCD alone.

Expected Performance

- Radio array will be sensitive at low energies as well as significant increase for higher energies compared to Water Cherenkov array.
- Extend the sky coverage and declination range.

- Radio trigger under development, significant improvements expected from simulation study.
- Significant contribution to photon sensitivity and sky coverage.
- The first phase of Radio array is operating and actively taking data with 40 stations since end of May.
- The full Radio array ~ 1600 stations will be deployed by the end of the year.

Backup: Rd Data

- 40 Active stations in the field
- Operating in a slave-mode (If WCD trigger, ask for Radio data)

Backup: Rd Data

- 40 Active stations in the field
- Operating in a slave-mode (If WCD trigger, ask for Radio data)

Event example recorded by Radio and WCD

SD reconstruction (30 signals)

 $E = (1.17 \pm 0.04) \times 10^{20} \text{ eV}$

$$(\theta, \phi) = (57 \pm 0.1, 315 \pm 0.1)$$

Backup: Expected Performance

Radio array will be sensitive at low energies as well as significant increase for higher energies compared to

Backup: Event Radio Trigger 'Photons'

- A New Hybrid Trigger RD + WCD
- 50% of Events with T3,
- 85% of reconstructable events (RD-only)
- $14 \times$ more than standard WCD trigger.

Backup

Radio Emission Mechanisms

Geomagnetic mechanism

Separation of e- & e+ in the magnetic field (B) of the Earth induces electric current (J_{geo}) parallel to $(\mathbf{v} \times \mathbf{B})$. Electric field: ~ B sin α $(\alpha = angle between \mathbf{B} and \mathbf{v})$.

Charge-excess

(Askaryan) mechanism

~ 20% excess e- over e+ because shower

drags atomic e- of atmosphere into shower

flow, mainly due to Compton:

Approx. polarization pattern on shower plane around shower axis 5

Backup

How to Identify a photon using WCD

Photon identification

Backup

Rescaling Photon Simulations to Lower Energies

