

The Radio Detector of the Pierre Auger Observatory

Key science questions •What are the sources and acceleration mechanisms of ultra-high-energy cosmic rays (UHECRs)?

- Do we understand particle acceleration and physics at energies well beyond the LHC (Large Hadron Collider) scale?
- •What is the fraction of protons, photons, and neutrinos in cosmic rays at the highest energies?

The Radio Detector of the Pierre Auger Observatory

 dual polarized radio antenna (30-80 MHz) on each SD station

1661 positions over 3000 km²

 mass sensitivity for inclined air showers radio: e/m WCD: muons

complementary to SSD/WCD

Expected number of cosmic rays in 10 years Karlsruhe Institute of Technology

T. Huege, UHECR symposium 2022

- integral spectrum from folding flux with aperture
- expect ~4000 cosmic rays above 10¹⁹ eV

Expected mass composition sensitivity

see also proof of principle study with AERA, PoS(ARENA2022)

Precision measurement of muon number

 very precise measurement of muon number with WCD & RD at highest energies

 especially measurement of the variation of the muon number will be very powerful

Serious logistics effort to get all components to the Observatory

- solar panels 2000 units
- antenna arms 6800 parts
- ropes (6 km) and tensioners for the mast
- Al tubes for frame 13600 parts
- Al plates and antenna foot 8500 parts
- small parts, u-bolts, nuts, screws, ... ~400000 pieces
- housings for digitizers 2000
- pigtail cables for the LNA 4000
- housings for LNAs and bottom loads 12000 parts
- glass fiber antenna masts 1700
- ferrites 8500
- mounting brackets for solar panels 3400 pieces
- L-ground bracket inside the dome 1700 pieces
- bottom load PCBs 2000 pieces
- LNAs 2000 units
- signal cables from LNA to digitizer 10200 cables
- digital cable from digitizers to UUB 1700 cables
- fixtures to assemble ferrites 24 units
- digitizers 2000 units

> 6 sea containers, 75 m³ each & several (~5-10) air freight cargos hef VUB

27th Symposium on Astroparticle Physics in the Netherlands, Soesterberg - June 2023

Deployment in field ongoing

27th Symposium on Astroparticle Physics in the Netherlands, Soesterberg - June 2023

Calibration with Galactic signal

Simulated galactic signal in the EW loop

- EW calibration constant: 1.03 ± 9.6% ± 2%
- NS calibration constant: 0.96 ± 9.7% ± 2%
- <u>Uncertainty caused by the Antenna model: max 1.5%</u>

T. Fodran, ICRC 2022 T. Fodran, ARENA 2022

27th Symposium on Astroparticle Physics in the Netherlands, Soesterberg - June 2023

A measured air shower

- [max = 52 (-6), 51 (-10)]
- [max = 53 (-2), 46 (-2)]

Measured air showers

sky map

distribution of shower cores

strong NL contribution to Pierre Auger Observatory significant enhancement of performance of Observatory

deployment in field ongoing expect to be completed in early 2024 stay tuned for first results

