

Direct dark matter searches

Tina Pollmann

CAN symposium, Soesterberg, Netherlands June 20, 2023

Dark Matter in Galaxy Cluster MACS J00254.4–1222 Hubble Space Telescope ACS/WFC • Chandra X-Ray Observatory

NASA, ESA, CXC, M. Bradač (University of California, Santa Barbara), and S. Allen (Stanford University) STScI-PRC08-32

Astronomical observations consistently indicate that ~83% of the mass in the universe seems to be made of (an) unknown particle(s).

Blue: Gravitational potential inferred from micro lensing

Pink: X-ray emission from hot gas

At least one particle beyond the standard model exists	?	
mass	?	
interaction cross sections	upper limits in some mass ranges	
lifetime	> age of universe	
electric charge	0	
weak charge	maybe	
color charge	0	

We employ many strategies to pin down this new particle

direct detection	indirect detection	collider production	astrophysical/ cosmological
interactions between	excess particle flux	excess of 'invisibles'	model effect of DM
galactic DM and	in cosmic rays from		on observable
terrestrial SM	DM annihilation or		astrophysical
particles	decay		objects

Direct detection with nuclear scattering: detecting WIMP-induced nuclear recoils

A direct detection signal constrains the DM mass and interaction cross section.

'Standard WIMP' detectors currently operating

The Netherlands (Nikhef) are contributing to XENON and DARWIN/XLZD.

Gran Sasso national lab (Italy) 3600 mwe shielding against CR secondaries

Liquid Xe TPC for R&D at Nikhef

-> Maricke Flierman's talk in the afternoon session

An interaction in liquid xenon creates scintillation photons and ionization electrons. Both are detected in XENONnT.

Photon detectors

Position and particle ID from the intensity and timing of the light and charge signals.

Latest result from XENONnT: All events consistent with background

(*) XENON + LZ + DARWIN

XLZD and ARGO will probe the remaining accessible parameter space for standard WIMPs.

Large sensitive mass, low energy threshold, low background: liquid noble gas detectors turn into observatories for rare processes.

- The Netherlands contributes to the global liquid-xenon DM programme
- 'neutrino fog' to be reached by at least 2 experiments within ~15 years, which will either lead to detection, or put strong pressure on supersymmetric models.
- We plan for the Xe-based direct detector programme to continue for the next ~20 years
- Large WIMP detectors are observatories sensitive to rare interactions with neutrinos and alternative dark matter candidates

Intentionally left blank

The neutrino fog

The neutrino fog

https://arxiv.org/pdf/2109.03116.pdf

'G3' detectors additional physics reach: non-standard WIMP couplings, solar neutrinos, solar axions, rare decays ($0\nu\beta\beta$), ...

Competitive limits already from XENON1T: $0\nu\beta\beta$ (limit) and ECEC (rarest measured decay)

