# Neutrinos







Dorothea Samtleben

### • The neutrino - the unknown

- masses, mixing angles, CP phase
- sterile neutrinos?
- The neutrino the cosmic messenger
  - Cosmic high energy neutrino sources
  - Relic neutrinos

#### • The neutrino - the unknown

- masses, mixing angles, CP phase
- sterile neutrinos?
- The neutrino the cosmic messenger
  - Cosmic high energy neutrino sources
  - Relic neutrinos

#### **Experiments with Dutch involvement:**

Neutrino telescopes: KM3NeT, ANTARES<sup>\*</sup> (Global Neutrino Network) Neutrino beam (accelerator): DUNE Dark matter detectors: KamLand, XENONNT, XLZD Very low energy neutrino detection: Ptolemy Cosmic rays/neutrinos (radio): Pierre Auger Observatory, GRAND R&D for acoustic neutrino detection

(New heavy neutral lepton searches: ATLAS, LHCb, FASER, SND)

\* ANTARES dismantled 2022

#### Neutrinos from meV to PeV Auger **GRAND** 10<sup>18</sup> acoustig R&D CNB Solar (nuclear) Neutrino energy flux Eø [cm<sup>-2</sup>s<sup>-1</sup> 10<sup>12</sup> Solar (thermal) Reactors 10<sup>6</sup> Geoneutrinos 10<sup>0</sup> DSNB BBN (n) Atmospheric 10<sup>-6</sup> IceCube data (2017)10<sup>-12</sup> L BBN (<sup>3</sup>H) **KAMLAND** Cosmogenic DUNE 10-18 10<sup>-6</sup> 10<sup>-3</sup> 10<sup>0</sup> 10<sup>3</sup> 10<sup>6</sup> 10<sup>9</sup> 10<sup>12</sup> 10<sup>18</sup> 10<sup>15</sup> PTOLEMY ANTARES/KM3NeT Energy E [eV] **Reactor neutrinos** Accelerator neutrinos

Aside from cosmic exploration also rich fundamental physics potential **Neutrino properties** 

# Neutrino masses

3 mass eigenstates mixing with 3 flavor eigenstates

 $\Rightarrow$  Neutrino oscillations:

2 mass differences, 3 angles, 1 phase (CP)





# **Atmospheric neutrino oscillations**

**Expected oscillated** 

## Neutrino telescope KM3NeT in the Mediterranean

**ARCA:** Italian site, 3.5km deep, cosmic neutrino detection **ORCA**: French site, 2.5km deep, atmospheric neutrino oscillations







 KM3NeT Neutrino @km3net · Jun 14, 2022
 II

 KM3NeT/ARCA19 is a fact
 II

The campaign was a complete success, everything was accomplished as foreseen. In only two weeks we more than doubled our **#detector!** 

We now have 2 new junction boxes perfectly working 11 new lines + the 8 we already had

Let's catch some #neutrinos!



## Neutrino telescope KM3NeT in the Mediterranean

**ARCA:** Italian site, 3.5km deep, cosmic neutrino detection **ORCA**: French site, 2.5km deep, atmospheric neutrino oscillations

**ARCA:** 21 strings operating, 125 funded (deployment by 2025) **ORCA:** 16 strings operating, 50 funded (deplyment by 2025)



amplitude [mrad]





 KM3NeT Neutrino @km3net · Jun 14, 2022
 II

 KM3NeT/ARCA19 is a fact
 II

The campaign was a complete success, everything was accomplished as foreseen. In only two weeks we more than doubled our <u>#detector</u>!

We now have 2 new junction boxes perfectly working 11 new lines + the 8 we already had

Let's catch some #neutrinos!



## Absolute pointing check with moon/sun shadow

### No neutrino calibration source available

=> Use 'negative' signal in **atmospheric muons** 

 Abundance of muons from cosmic ray interactions in the atmosphere

 -> check direction of moon/sun
 -> shadow expected



## Absolute pointing check with moon/sun shadow



KM3NeT/ORCA6 strings1 year of data

|              | Sun           | Moon         |
|--------------|---------------|--------------|
| Significance | 6.2 σ         | 4.2 σ        |
| Amplitude    | 1.31 ± 0.34   | 0.71±0.27    |
| Resolution   | 0.65° ± 0.13° | 0.49°±0.15 ° |

arXiv:2211.08977 Eur.Phys.J.C 83 (2023) 4, 344

## Absolute pointing check with moon/sun shadow





## **KM3NeT/ORCA** oscillation analysis

510 days ORCA 6 strings: New Unblinding



## **KM3NeT/ORCA** oscillation analysis

510 days ORCA 6 strings: New Unblinding

### Travel length divided by Energy 'L over E'

### **Oscillation parameter fit**



## **KM3NeT/ORCA** oscillation analysis

510 days ORCA 6 strings: New Unblinding

### Travel length divided by Energy 'L over E'

### **Oscillation parameter fit**



## Neutrinoless double beta decay in KAMLAND-Zen



Probe Majorana character/mass of neutrino



## Neutrinoless double beta decay in KAMLAND-Zen



Limits close to range expected for inverted ordering
 Improvements can help constraining ordering

Physical Review Letters 130, 051801 (2023)

# **EUCLID** satellite

Launch planned 1 July 2023!

Power spectrum of structure sensitive to neutrino mass

=> Constraint on sum of neutrino masses Expected error on sum of masses <30meV

=> Interesting constraint also for mass ordering

# DUNE

# CP-phase sensitivity



## EPJ C80 (2020) 978



Leptonic scenario:

Photons from synchrotron radiation, inverse Compton scattering, no associated neutrinos

Credit: Marscheret al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF, DSCOVR:EPIC/NASA



Credit: Marscheret al., Wolfgang Steffen Sosmovision, NRAO/AUI/NSF, DSCOVR:EPIC/NASA

## **Cosmic neutrino source candidates: The usual suspects**









# New neutrino source detected by IceCube at $4.2\sigma$



NGC 1068 (Messier 77) 79+22(-20) events Spectral index: γ=3.2±0.2

MESSIER 77

# **Cosmic point sources**

### KM3NeT/ARCA 6 + 8 strings, 300 days New Unblinding:

- 100 source candidates
- No significant signal
- Brightest source: IC443 (Supernovae remnant)

| Name            | Decl          | sin(decl) | TS   | p-value<br>(local) |
|-----------------|---------------|-----------|------|--------------------|
| IC 443          | 22°30'0.00"   | 0.38      | 1.08 | .033               |
| HESS J1614-518  | -51°52'12.00" | -0.79     | 0.80 | .053               |
| Mkn 421         | 38°12'36.00"  | 0.62      | 0.47 | .063               |
| LHAASO J1908+06 | 6°20'60.00"   | 0.11      | 0.51 | .066               |
| J0927+3902      | 39°2'24.00"   | 0.63      | 0.33 | .079               |



Probing potential neutrino sources -> Future sensitivity sufficient to confirm/reject current hints (e.g. NGC 1068) Unique prospects for Southern Hemisphere

## ANTARES follow-up of potential neutrino flares found by IceCube New unblinding

| Source       | dec R   | A. [deg] | Duration<br>[days] | Signal<br>fitted | P-value               | σ    | UL 90%<br>[1/GeVcm2s] |
|--------------|---------|----------|--------------------|------------------|-----------------------|------|-----------------------|
| NGC 598      | (30.62  | 23.52)   | 67                 | 1.67             | 2.65 10 <sup>-2</sup> | 2.21 | 1.53 10 <sup>-5</sup> |
| TXS 0506+055 | (5.70   | 77.35)   | 208                | 0.86             | 3.13 10-2             | 2.15 | 7.43 10 <sup>-6</sup> |
| PKS 1502+106 | (10.50  | 226.1)   | 45                 | 1.26             | 3.78 10 <sup>-2</sup> | 2.07 | 3.56 10 <sup>-5</sup> |
| B3 0609+413  | (41.47. | 93.22)   | 328                | 0.36             | 9.63 10-2             | 1.66 | 3.29 10 <sup>-6</sup> |

Of 34 potentially flaring sources in ANTARES FoV 4 with >1.6σ signal

### **TXS0506/PKS1502+106:** Among most significant in IceCube paper. $(2.3\sigma \text{ and } 2.93\sigma)$



## **Cosmic Neutrinos**

**Discovery of astrophysical neutrino flux by IceCube** 

~ $3\sigma$ /~ $2\sigma$  confirmation from GVD/ANTARES

Where does it come from?

Differences in flux size and spectral index for different subsets of neutrinos?

### To be taken into account:

- different energy ranges
- different parts of the sky probed
- different interaction and observation channels
- different. systematic uncertainties

# KM3NeT will probe neutrino flux with complementary view



## **Cosmic Neutrinos**

**Discovery of astrophysical neutrino flux by IceCube** 

~ $3\sigma$ /~ $2\sigma$  confirmation from GVD/ANTARES

Where does it come from?

Differences in flux size and spectral index for different subsets of neutrinos?

### To be taken into account:

- different energy ranges
- different parts of the sky probed
- different interaction and observation channels
- different. systematic uncertainties

# KM3NeT will probe neutrino flux with complementary view



### **Galactic contribution**

Neutrinos expected from Cosmic Ray interactions with interstellar gas in Galactic Plane

IceCube&ANTARES analyses show excess in Galactic Plane

-> KM3NeT has direct view of Galactic Centrum => Measurement / constraint of flux



### **Galactic contribution**

Neutrinos expected from Cosmic Ray interactions with interstellar gas in Galactic Plane

IceCube&ANTARES analyses show excess in Galactic Plane

-> KM3NeT has direct view of Galactic Centrum => Scrutinize galactic signal!



*Physics Letters B Volume 841, 10 June 2023, 137951* 



# **GRAND:**

# A multimessenger experiment focussed on neutrino sensitivity



Sci. China Phys. Mech. Astron. 63 (2020) 1, 219501

GRAND will be located in many places around the world to cover 200000 km<sup>2</sup> in total



# GRAND@Auger



# **GRAND** in China



First prototypes are in the field and are being commissioned

# **Relic neutrinos**

Abundant, but very low energy -> hard to detect

Detection via inverse beta decay of tritium

- High cross-section for neutrino capture
- No energy threshold
- Sizeable lifetime
- Low Q-value of 18.6 keV
- Tritium beta decay ~10<sup>15</sup> Bq/gram



 $\nu_e$ 





**R&D at Nikhef, UvA, RU**..... building prototypes



# Neutrino experiments with Dutch involvement



# Backup

Aside from cosmic exploration also rich fundamental physics potential























Detection Units in staging area @ Malta





# A decade of discoveries lies ahead!





Models for neutrino fluence from **GW170817 (binary neutron star merger**) with measured upper limits by **Auger, IceCube, ANTARES** 

Expectation for **KM3NeT** sensitivity



EPJ Web of Conferences 207, 02009 (2019) VLVnT-2018

### **Transient sources**



### Real-time follow-up with KM3NeT

### Goals:

- Core-Collapse Supernova monitoring for prompt alerts
- Receive external electromagnetic / gravitational wave / neutrino alerts
  - => search for correlated neutrinos
- Send all flavor, all-sky neutrino alerts (multiplets, HE) to external observatories for follow-up

### **Correlation analyses:**

- Two unmodeled **GWs** follow-ups with MeV neutrinos GCN Circulars 26249 and 26751
- Multiple correlation analyses with IceCube neutrino events associated with blazars, follow-up of PKS-0735+178 in ATeL #15290
- Search for coincident neutrinos at both MeV level and above GeV for GRB221009A, no neutrinos found (GCN Circular 32741) refined offline analyses underway



### Multi-messenger network

Neutrinos IceCube, **GVD-Baikal Cosmic Rays** GeV/TeV γ rays Pierre Auger, Fermi, H.E.S.S. Telescope Array HAWC/LHAASO/... KM3Ne Radio/Optical/X-ray Grav Waves MWA, TAROT, MASTER, LIGO, VIRGO Swift, INTEGRAL

## Probing leptonic/hadronic scenarios in combination with CTA

Inverse Compton (IC) / Pion decay (PD) model fits to HESS data



discriminate leptonic and hadronic scenarios



## Supernova (SN) monitoring in KM3NeT

**Supernova MeV neutrinos** => collective excess of multi-fold coincidences on all DOMs

Real-time monitoring of activity



### **Expected KM3NeT sensitivity to CCSN**



 KM3NeT already in SNEWS: SN alerts sent and followed up



Super-K (Japan), LVD (Italy), Ice Cube (South Pole), KamLAND (Japan), Borexino (Italy), Daya Bay (IChina, KM3NeT (Mediterranean), HALO (Canada).

### **Cosmic Rays and Neutrinos**



#### Search for correlations of neutrinos and UHECRs



### **TA & Auger & IceCube & ANTARES**

Evaluation difficult due to CR deflections in magnetic field

#### => So far no direct correlation identified

- UHECR horizon much closer than for neutrinos
- Sources could be transient
  - -> couple of decades delay for CRs in galactic magnetic field
- Mass composition uncertainty (different deflection)

## **Cosmic Ray characterization with KM3NeT**

Most signals (muons & neutrinos) in detector from atmospheric cosmic ray interactions

=> information on hadronic interaction models
=> measurement of muon prompt flux
=> information on cosmic ray composition

### **Observables:**

 muon bundle multiplicity/diameter/zenith/energy
 => First promising reconstructions using GNNs on few-string detector simulations

Excellent resolutions of event topologies already with few strings





TDE, artists view DESY, Science Communications Lab



Starburst Galaxy: M82 NASA, ESA, and The Hubble Heritage Team (STScI/AURA)



Blazar, artists view DESY, Science Communications Lab



SN remnant: Crab Nebula NASA and STScl

