

Topical Lectures

Dr Clara Nellist

(she/her)

Objective

- Want to give you an experimental overview of the top quark and why it's interesting (in < 1 hour!)
- Focus on the what we learn from studying the top quark at the LHC.
 - Won't go into the full details of the selections for every analysis.
 - Won't go into every kind of measurement.

The LHC detectors

CMS

LHCb

ALICE

Colliding protons

We wanted to explore a high range of masses: from 50 GeV to 1 TeV

ATLAS Installation in the cavern 2004

What is a Feynman diagram?

Jets

- Partons (quarks and gluons) carry colour charge and therefore don't like to be alone.
- Energy deposits in the calorimeter can be grouped together and declared a jet.

• Jet Vertex Tagging allows us to ignore (some) jets from pile-up by looking at tracks associated with the jets.

The Big Questions

Image: Jorge Cham / PhD Comics

The Standard Model

The discovery of a new boson!

The Higgs boson – a major success of the first LHC run.

This will be covered by Robin later

The search for new particles (dark matter?)

Dark Matter

Supersymmetry?

The road to the top quark

Key particle discoveries

- Once the tau lepton and the b-quark had been discovered, there was the assumption that there must be an up-type quark in the third generation.
- Limits on the mass were set from loops within diagrams for W & Z bosons (from SppS and LEP).

• $m_{top} = 160^{+50}_{-60} \text{ GeV}$

100

200

300

m top (GeV)

In steps the Tevatron

FERMILAB'S ACCELERATOR CHAIN

Discovered in **1995** by D0 and CDF at Fermilab in the US.

CoM Energy: 1.8 TeV

Looked at ~2x10¹² proton-antiproton collisions

Events with a W bosons (leptonic decay) and 3 or more jets (with at least one b-tag)

CDF, PRL 74, 2626 (1995) D0, PRL 74, 2632 (1995)

Photo: Reidar Hahn, Fermilab

The top quark

Discovered in 1995 by D0 and CDF at Fermilab in the US.

Clara Nellist | Topical Lectures | 05/06/2023

The top quark

- The heaviest fundamental particle.
 - ~170 GeV (but we don't know why it's so heavy).
 - Very short lifetime.
- The weak iso-spin partner of the b quark
- Expected to couple strongly to the Higgs boson (~1).
 - A possible connection to new physics!
 - Need to measure its properties and interactions with other particles in further detail to find out!

Production time Lifetime Hadronisation time
$$\frac{1}{m(t)} < < \frac{1}{\Gamma(t)} < < \frac{1}{\Lambda_{QCD}}$$
 ~4 x 10-27 s ~4 x 10-25 s ~3 x 10-24 s

Top quark production (LHC)

90% Gluon-gluon fusion

+ some others

Pairs

Single top

10% quarkantiquark annihilation

s-channel

tZ production

Clara Nellist | Topical Lectures | 05/06/2023

The top quark decay

l+jets:

- 1 charged lepton
- 1 neutrino (missing momentum)
- 4 jets

Good signal / background, but there are large jet and modelling uncertainties.

dilepton:

- 2 charged leptons (opposite charge)
- 2 neutrinos (missing momentum)
- 2 jets

Very clean signal, but difficult to reconstruct the kinematics.

All-hadronic:

- 6 jets
- Largest BR, but also large multi-jet background.

Jet

Jet

B-tagging b-jet **Displaced Tracks** Secondary **Vertex** Jet **Primary Vertex** Prompt **Tracks** Jet Clara Nellist | Topical Lectures | 05/06/2023

Requires a very precise pixel detector

Clara Nellist | Topical Lectures | 05/06/2023

LHC Run 1 and 2 history and some selected highlights

• Run 1

- Rediscovery of the top quark
- First associated production (ttγ)
- Spin correlations

• Run 2

- Searches for FCNC
- Boosted differential tt analyses
- Observation of tttt and of ty
- Energy asymmetry & single-top polarization measurements

As the data increases, we have improved precision measurements and searches, but systematic uncertainties have now begun to dominate.

Top quark production

Another test of the Standard Model is to measure the rates at which top quarks are produced.

Single-top t-channel

- ~30 million collisions in ATLAS Run 2
- Probe of the electroweak interaction
- Top polarized: sensitive to new physics

Four top quarks at once is very rare => challenging

Top Quark Production Cross Section Measurements

Status: November 2022

Clara Nellist | Topical Lectures | 05/06/2023

Top quark pair production

Another test of the Standard Model is to measure the rates at which top quarks are produced.

There is a very impressive agreement between prediction and measurements

Note:

Single top quark production

Another test of the Standard Model is to measure the rates at which top quarks are produced.

tt+X production

- To understand the top quark and validate the Standard Model, we need to look at how it interacts with other particles.
 - Higgs Boson Yukawa coupling
 - Photons Determine the charge of the top quark
 - Heavy gauge bosons: Z and W - Direct probe of the weak couplings of the top quark.
 - Four tops High sensitivity to New Physics.

Top Properties

Clara Nellist | Topical Lectures | 05/06/2023

Top Mass

- Properties of the top quark are well predicted
 - ⇒ precision test of the SM
 - Mass measurement is also a probe of the consistency of the SM

The stability of the universe depends on it!

(Please note: measuring this doesn't affect the stability)

As you saw from Juan:

Top Mass How to directly measure the mass?

3. Reconstruct event

1. Monte Carlo simulation

2. Select events

4. Templates for different masses

ATLAS Simulation $m_{top} = 172.5 \text{ GeV}$ 150 160 m_{top} [GeV]

5. Obtain top mass from fit to data

Slide credit: A. Knue https://cern.ch/5gkk5

Top Mass

Top Mass

- Alternative methods of measuring mass:
 - Design cross-section measurement to be insensitive to mass.
 - Then compare to well-defined predictions

Charge Asymmetry

Top and anti-top quarks are not produced equally with respect to the beam direction.

Top quarks are produced preferentially in the centre of the LHC's collisions, while anti-top quarks are produced preferentially at larger angles.

This is known as a 'charge asymmetry' and is a test of the Standard Model.

$$A_C = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$

$$(\Delta|y| = |y_t| - |y_{\bar{t}}|)$$

Spinning tops

- Since the top quark decays before hadronization, can study 'bare' properties.
- The spins of the top quark and the anti-top quark in a pair can be preferentially aligned or anti-aligned, depending on their production mechanism.
- Single-top t-channel here in Nikhef!
 - ~30 million collisions in ATLAS Run 2
 - Probe of the electroweak interaction
 - Top is polarized due to left-handed W-coupling
 - Top spin points in the direction of the spectator-quark (q')
 - Top polarized: sensitive to new physics
- Systematically limited channel
 - => need to increase sensitivity and improve reconstruction.

Four top quarks produced at once!

- The **rarest** process including top quarks measured at the LHC so far!
 - One event for every 70,000 top-quark pairs.
- **Heaviest** particle final state ever seen at the LHC
 - Provides physicists with a **unique** opportunity to study the top quark's relationship to the Higgs boson.

SUSY (gluino/sgluino pair, for example)

Contact Interaction

2HDM

Production rate could be **enhanced** by various new BSM theories

providing a unique window to search for new physics.

Four top quarks produced at once!

Four top production cross-section

A maximum likelihood fit is performed with all systematic uncertainties included.

The predicted cross-section is: SM NLO QCD+EW: **12.0** +2.0 -2.5 fb [JHEP02(2018)031]

Signature: from 0-4 charged leptons and up to 12 jets produced by the quarks!

Multi-lepton channel (2LSS/3L):

Low branching fraction (13%).

Cleaner signal.

Single lepton / dilepton opposite sign (1L/2LOS):

Higher branching fraction (57%).

Suffers from a large irreducible background.

Four top production cross-section

The signal strength (measured XS / SM prediction):

$$\mu = 1.9 \pm 0.4(\text{stat})^{+0.7}_{-0.4}(\text{syst}) = 1.9^{+0.8}_{-0.5}$$

Therefore the measured cross-section is:

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}(\text{stat})^{+4.6}_{-3.4}(\text{syst}) \text{ fb} = 22.5^{+6.6}_{-5.5} \text{ fb}.$$

Gives us an observed (expected) significance of:

• 6.1 (4.3) standard deviations

=> OBSERVATION!

Triple top quarks:

- always produced in association with other particles
- split into the tt⁻tW & tt⁻tq processes

Lepton Flavour Universality

- In the Standard Model, leptons coupling to W&Z bosons is not dependent on mass.
 - ⇒ Lepton flavour should be universal.
 - \Rightarrow But we want to test it!
- We measure the ratio of two decays and see how far it is from 1.

Flavour Changing Neutral Current

- Changing the flavour of a particle without changing the charge.
 - => If they occur, it's a clear indication of new physics.

Effective Field Theory (EFT) with tops

- Allows us to test for new physics in a model independent way
- Plenty of EFT activity going on at the LHC with top quarks
- Comparisons are already a reality
- Combinations in progress between CMS and ATLAS

November 2022

Have only taken ~ 10% of planned data so far

The LHC schedule

More on this from Ewen this afternoon.

Tops at the the HL-LHC?

- Increase the integrated luminosity by a factor of 10 beyond the LHC design luminosity
 - Integrated luminosity 3000-4000fb⁻¹
 - Expected pile-up (PU) 140-200 collisions per bunch crossing
- Increased data is going to greatly benefit the measurement of rare processes.
- Pile-up is going to be a huge challenge
- ATLAS upgrades:
 - Completely new tracking detector (ITk)
 - Extended to |η|=4.0
 - Timing detector (HGTD)
 - Time resolution of 30 ps

The future is top!

- The top quark is 28 this year!
 - And yet there's still so much to learn about & from this particle.
- So far there has been no concrete sign of new physics in top data, but plenty of analyses with machine learning and EFT measurements still to come.

Mank you!

Backup Here's one I prepared earlier

W-helicity

