

Stress-testing the Standard Model at ATLAS: a theorist viewpoint

Juan Rojo

VU Amsterdam & Theory group, Nikhef

Nikhef Topical Lectures: Physics at the LHC Amsterdam, 5th June 2023

The Standard Model at the cross-roads

The Standard Model

Standard Model of particle physics: hugely succesful, powerful framework describing **elementary particles** and their **interactions**

matter particles

- 6 quarks (fractional charge)
- 3 charged leptons (*e.g. electron*)
- 3 neutrinos (only weak charge)
- Organised in 3 generations: identical (?) except for mass

force carriers

- photon (*electromagnetism*)
- gluon (strong nuclear force)
- weak bosons (*weak nuclear force*)

Higgs boson

both matter particle and force carrier

The (incomplete) Standard Model

Standard Model of particle physics: hugely succesful, but leaves many foundational questions unanswered

Origin of particle masses and Higgs force?

Where is all the missing Antimatter?

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{V} + h.c. \\ &+ \mathcal{V}_i \mathcal{Y}_{ij} \mathcal{Y}_j \mathcal{P} + h.c. \end{aligned}$ $+ |D_{\varphi}|^{2} - V(\phi)$

What is Dark Matter?

Quantum Gravity? Inflation?

requires new particles and interactions beyond the Standard Model

Higgs Discovery

The Higgs boson is nowadays textbook material, but before its discovery in 2012 its existence was far from obvious

Higgs Discovery

The Higgs boson is nowadays textbook material, but before its discovery in 2012 its existence was far from obvious

The fact that we have observed **all SM particles** does not mean that we are done: **we still need to discover & validate** many of the **SM interactions!**

particles

https://www.piqsels.com/en/public-domain-photo-fqrgz

particles + interactions

https://commons.wikimedia.org/wiki/File:LEGO_Expert_Builder_948_Go-Kart.jpg, CC-BY-SA-4.0

2 = - = FALFMU + iFBY + X: Yij X; \$+h.c. $+ \left| D_{m} \varphi \right|^{2} - V(\phi)$

credit: G. Salam

- T, MV $\chi_i \mathcal{Y}_{ij} \chi$ + $+ D_{m} \varphi^{\prime} -$

credit: G. Salam

Gauge sector: Electromagnetism, QED, weak interactions

well understood, high-precision tests (e.g. anomalous magnetic moment electron)

basic ideas already present in Maxwell's electromagnetism

10

credit: G. Salam

Higgs sector & Yukawa interactions: became available with Higgs discovery

the majority of free parameters in the SM appear in the Yukawa sector

- Initial constraints on second-generation couplings
- First-generation Yukawa forces never probed
- Limited information on Higgs self-interactions

11

- TAV

Yukawa forces are unique: first fundamental quantum interaction where **interaction strength is not quantised** Higgs sector & Yukawa interactions: became available with Higgs discovery

the majority of free parameters in the SM appear in the Yukawa sector

- Initial constraints on second-generation couplings
- First-generation Yukawa forces never probed
- Limited information on Higgs self-interactions

- TAV

 $-\,\mu^2\phi^2+\lambda\phi^4$ why Higgs mechanism is non-trivial? our universe -1 0 1

- Only know elementary scalar particle
- A field permitting all space and spontaneously breaking EW symmetry
- Different interactions of this field with each of the matter particles

The Higgs potential

p

Х

Η

h

- Alternative potentials would have dramatic implications for cosmology, baryon asymmetry, stability the Universe
- Can be probed directly with **Higgs pair production** *(also from single Higgs via quantum corrections)* 13

Towards a New Standard Model

conceptual limitations & unexplained particle physics / astronomical / cosmological data

theory bottlenecks

- Why 3 generations? Universality?
- Origin of particle masses, couplings, electroweak scale?
- Higgs mechanism elementary?
- Stability of Universe's vacuum?
- Quantum gravity?

HEP anomalies

- Lepton-flavour universality?
- Muon anomalous magnetic moment?
- *≩ W-*mass?

astro/cosmo conundrums

- (Particle) Dark Matter?
- Matter-antimatter asymmetry?
- Inflation?
- Strong gravity, deviations from general relativity?

Higgs as a probe and portal for New Physics

prediction Leptons Quarks е u d S Vector bosons Higgs boson $Z \mid W$ Н 10² 10¹ Particle mass (GeV) No evidence yet Third Probably needs generation generation future colliders ≈173 GeV c⁻² ≈125 GeV c⁻² t Н Higgs Top boson ≈4.18 GeV c⁻² b Established Bottom ≈91.2 GeV c⁻² Ż ≈105.7 MeV c⁻² 1.777 GeV c⁻² τ Z boson Tau ≈80.4 GeV c⁻² First evidence W To be conclusively established at the LHC W boson

couplings

Key ATLAS physics targets

probability of producing a W+ boson

^{mg} Proton structure constraints

 $\sigma(pp \to W^+) \propto f_u(x_1) \otimes f_{\bar{d}}(x_2) \otimes \hat{\sigma}(u\bar{d} \to W^+)$

Proton structure constraints

ATLAS measurements enable improved modelling of proton substructure

Precision determination of SM parameters

The SM contains **18 free parameters** which have to be constrained by experimental data. ATLAS can provide stringent constraints for many of them

Hadron colliders outperform LEP due to unprecedented statistics

W mass

- Challenging measurement, requires controlling shape of distributions (template fits) at per-mille level
- Fension between ATLAS (favour SM) and CDF measurements (favours supersymmetry)

Precision determination of SM parameters

The SM contains **18 free parameters** which have to be constrained by experimental data. ATLAS can provide stringent constraints for many of them

0.130

Reconstructing the Higgs potential

Searches for new phenomena

- Beyond traditional BSM production benchmarks (e.g. supersymmetry), new ideas being proposed to exploit LHC sensitivity to new massive particles
- Leptoquarks (coupling leptons with quarks) could be resonantly produced once we account for the lepton content of the proton (lepton PDFs generated by QED DGLAP evolution)
- Sector of the se

Searches for new phenomena

Searches for New Physics rely on a robust understanding of SM processes

Forward-backward asymmetry in high-mass Drell-Yan

$$\frac{d^{3}\sigma}{dm_{\ell\bar{\ell}}dy_{\ell\bar{\ell}}d\cos(\theta^{*})}\bigg|_{\mathrm{FB}} = \frac{d^{3}\sigma}{dm_{\ell\bar{\ell}}dy_{\ell\bar{\ell}}d\cos(\theta^{*})}\bigg|_{\cos\theta^{*}} - \frac{d^{3}\sigma}{dm_{\ell\bar{\ell}}dy_{\ell\bar{\ell}}d\cos(\theta^{*})}\bigg|_{-\cos\theta^{*}}$$

Is a negative FB asymmetry evidence for **BSM** physics? Or can it also be explained by QCD?

$$A_{\rm FB}^{\rm (LO)} \propto f_q(x_2) f_{\bar{q}}(x_2) \left[\frac{f_q(x_1)}{f_q(x_2)} - \frac{f_{\bar{q}}(x_1)}{f_{\bar{q}}(x_2)} \right]$$

ATLAS data can also calibrate its own ``backgroun by means of improved proton structure analyses

fall-off rate quarks

fall-off rate anti-quarks

MSHT20

1.0

0.8

The Standard Model as an EFT

$$\mathcal{L}_{\mathsf{SMEFT}}(\{c_i\},\Lambda) = \mathcal{L}_{\mathsf{SM}} + \sum_{d=5}^{\infty} \sum_{i=1}^{N_d} c_i^{(d)} \frac{\mathcal{O}_i^{(d)}}{\Lambda^{d-4}}$$

Model Constraint of Constraint Sector Low-energy limit of generic UV-complete theories with linearly realised EWSB

- **Complete basis** at any given mass-dimension: systematic parametrisation of BSM effects
- **Fully renormalizable**, full-fledged QFT: compute higher orders in QCD and EW

Exploit the full power of **SM measurements** for model-independent BSM searches: constrain large classes of BSM scenarios matched to the SMEFT

tree-level, single-field extensions of the SM FitMaker, Ellis et al 2020

SMEFT at ATLAS

SMEFT interpretation of ATLAS **Higgs** and **electroweak data**

- Constraints 24 independent DoFs in the SMEFT parameter space
- Input for global EFT fits accounting for also top and/or flavour data

Process	Details
$pp \to h \to \gamma\gamma$	ggF, VBF, Wh , Zh , $t\bar{t}h$, th
$pp \to h \to ZZ^*$	ggF, VBF, Wh , Zh , $t\bar{t}h(4\ell)$
$pp \to h \to WW^*$	ggF, VBF
$pp \to h \to \tau\tau$	ggF, VBF, $Wh, Zh, t\bar{t}h(\tau_{\rm had}\tau_{\rm had})$
	Wh, Zh
$pp ightarrow h ightarrow b ar{b}$	VBF
	$t ar{t} h$
$pp \to e^\pm \nu \mu^\mp \nu$	$p_T^{\mathrm{lead.~lep.}} \left(m_{\ell\ell} > 55\mathrm{GeV}, p_T^{\mathrm{jet}} < 35\mathrm{GeV} ight)$
$pp ightarrow \ell^\pm u \ell^+ \ell^-$	$m_T^{WZ} \ (m_{\ell\ell} \in (81, 101) \text{ GeV})$
$pp \to \ell^+ \ell^- \ell^+ \ell^-$	$m_{ZZ} \ (m_{4\ell} > 180 {\rm GeV})$
$pp \to \ell^+ \ell^- jj$	$\Delta \Phi_{jj} \ (m_{jj} > 1000 \text{GeV} , m_{\ell\ell} \in (81, 101) \text{GeV})$

Heavy Ion Collisions @ ATLAS

- ATLAS also has a rich program in proton-ion and ion-ion collisions: connection with Quark Gluon Plasma (Wednesday lectures)
- High-pT physics and QGP physics connected by hard probes in proton-lead and leadlead collisions
- Proton-lead collisions determine the initial state of lead-lead collisions: disentangle cold from hot nuclear matter effects

Heavy Ion Collisions @ ATLAS

- ATLAS also has a rich program in proton-ion and ion-ion collisions: connection with Quark Gluon Plasma (Wednesday lectures)
- High-pT physics and QGP physics connected by hard probes in proton-lead and leadlead collisions
- Proton-lead collisions determine the initial state of lead-lead collisions: disentangle cold from hot nuclear matter effects

Photons not affected by QGP, but still modified in p+Pb vs p+p from cold nuclear matter effects

Summary and outlook

- A general-purpose detector such as ATLAS offers excellent opportunities to stress-test the Standard Model at the high-energy frontier
- Fingerprinting the Higgs particle (2nd gen couplings, self-interactions, new EFT interactions) remains a key goal of the ALTAS program including the HL phase
- Precision measurements of SM parameters and of hadron structure provide a complementary approach to direct new physics searches
- A lot of connections (in many cases unexploited!) between the ATLAS program and those of **LHCb** (flavour physics, Tuesday) and **ALICE** (Quark-Gluon Plasma, Wednesday)

