Neutrinoless double-beta decay experiments

Theory meets experiments | Kelly Weerman | 10-06-2023

Observation of $0\nu\beta\beta$ to confirm neutrinos majorana nature

$$2\boldsymbol{\nu}\boldsymbol{\beta}\boldsymbol{\beta}: (A,Z) \to (A,Z+2) + 2e^{-} + 2\boldsymbol{\overline{\nu}}_{e} \quad \boldsymbol{0}\boldsymbol{\nu}\boldsymbol{\beta}\boldsymbol{\beta} \quad (T_{1/2}^{0\nu})^{-1} \propto \langle m_{\beta\beta} \rangle^{2}$$

 $2\nu\beta\beta$ exceptionally slow nuclear process, $T_{1/2} \sim 10^{19-21}$ years, so how do we detect $0\nu\beta\beta$?

Nik

UNIVERSITY OF AMSTERDAM Experimental design | KamLAND detector | Backgrounds & Analysis | 0
uetaeta Results | Future detectors

2

Experimental design criteria for $0\nu\beta\beta$

Direct searches: kinematic parameters of the two electrons

→ Total energy and individual electron paths

$$T_{1/2}^{0\nu} = \ln 2 \frac{N_A}{W} \left(\frac{a \cdot \epsilon \cdot M}{N_{\rm obs}} \right) t \qquad \propto \quad \text{a} \epsilon \sqrt{\frac{M}{N_{\rm bkg}} \cdot \Delta E}$$

Μ

 ΔE

N_{bkg}

Detector and isotope choice depending on:

- High isotopic abundance a
- Deployment in large quantity
- High-E resolution detector
- Low-background conditions

Experimental design criteria for $0\nu\beta\beta$

There are 35 isotopes capable of $\beta\beta$ decay, but not all suitable

Isotope	a (%)	Q_{etaeta} (MeV)	
⁴⁸ Ca	0.187	4.263	$\int \mathbf{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}$ influence on:
⁷⁶ Ge	7.8	2.039	Background
⁸² Se	8.7	2.998	Energy resolution
¹³⁰ Te	34.08	2.527	
¹³⁶ Xe	8.9	2.459	136_{54} Xe $\rightarrow 56_{56}$ Ba + 2e

$$T_{1/2}^{0\nu} \propto a\epsilon \sqrt{\frac{Mt}{N_{\rm bkg} \cdot \Delta E}}$$

- \rightarrow Isotopic abundance
- \rightarrow Quantity
- \rightarrow Energy resolution
- \rightarrow Backgrounds

General purpose detector

Solar neutrinos

Geo and reactor neutrinos

Accelerator neutrinos

Astrophysical neutrinos

Neutrinoless double beta decay

Kamioka Liquid Scintillator Antineutrino Detector

Nikl

UNIVERSITY OF AMSTERDAM

Spherical tank, ø18m

• 3.2kt pure water

Experimental design | KamLAND detector | Backgrounds & Analysis | $0\nu\beta\beta$ Results | Future detectors = 2

Kamioka Liquid Scintillator Antineutrino Detector

Nik

UNIVERSITY OF AMSTERDAM

Spherical tank, ø18m

• 3.2kt pure water

~1800 17- & 20-inch PMTs

Non-scintillation oil 1.8m

KamLAND-LS, Ø13m, 1.2kt

- Dodecane 80.2%
- Pseudocumene 19.8%
- PPO 1.36g/L

Kamioka Liquid Scintillator Antineutrino Detector

Inner detector

- ~ 1300 17-inch PMTs
- ~ 550 20-inch PMTs

KamLAND-Zen: Zero Neutrino Double Beta

Nik hef 👰

UNIVERSITY OF AMSTERDAM

$$^{136}_{54}$$
Xe $\rightarrow \ ^{136}_{56}$ Ba + 2e⁻

Xe-LS balloon, ø3.8m, 24t

- 3.13% enriched xenon
 - → 745 kg ¹³⁶Xe
 - → 970 kg yr Exposure

 $Q_{\beta\beta} = 2.458 \text{ MeV}$

- $\succ 2\nu\beta\beta$ decay
- ➤ Cosmogenic spallation products
 - → Short-lived: triple coincidence tagging
 - → Long-lived: problem
- ➤ Solar neutrino interactions
- ➤ Radioactive contamination

Visible Energy

- $\succ 2\nu\beta\beta$ decay
- ➤ Cosmogenic spallation products
 - → Short-lived: triple coincidence tagging
 - → Long-lived: problem
- ➤ Solar neutrino interactions
- ➤ Radioactive contamination

Long-lived isotope production from xenon spallation

> Muon spallation on xenon results in long-lived isotopes $T_{1/2} \sim (\text{sec} - \text{months})$

- $\succ 2\nu\beta\beta$ decay
- ➤ Cosmogenic spallation products
 - → Short-lived: triple coincidence tagging
 - → Long-lived: problem
- ➤ Solar neutrino interactions
- ➤ Radioactive contamination
 - → In Xe-LS

UNIVERSITY OF AMSTERDAM

Nik

→ **External** to Xe-LS: IB material

- $\succ 2 \nu \beta \beta$ decay
- ➤ Cosmogenic spallation products
 - → Short-lived: triple coincidence tagging
 - → Long-lived: problem
- ➤ Solar neutrino interactions
- ➤ Radioactive contamination
 - → In Xe-LS

UNIVERSITY OF AMSTERDAM

→ External to Xe-LS: IB material

- $\succ 2\nu\beta\beta$ decay
- ➤ Cosmogenic spallation products
 - → Short-lived: triple coincidence tagging
 - → Long-lived: problem
- ➤ Solar neutrino interactions
- ➤ Radioactive contamination
 - → In Xe-LS

UNIVERSITY OF AMSTERDAM

→ **External** to Xe-LS: IB material

Most stringent limit on the half-life of $0\nu\beta\beta$

Nik

Energy resolution $\sim rac{6.7\%}{\sqrt{E(MeV)}}$

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \,\mathrm{yr}$

First test of the Majorana nature in the IO region

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q,Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \longrightarrow \langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^3 U_{ei}^2 m_i \right|$$

Nuclear Matrix Element

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr}$

 $\langle m_{\beta\beta} \rangle < (36 - 156) \mathrm{meV}$

Most promising isotope candidates: ⁷⁶Ge | ⁸²Se | ¹⁰⁰Mo | ¹³⁰Te | ¹³⁶Xe

Leading next-generation ton-scale experiments:

► **CUPID** ¹⁰⁰Mo bolometer

← upgrade of CUORE ¹³⁰Te Bolometer

► **nEXO 5 ton** ¹³⁶Xe TPC

← upgrade of EXO-200 200kg ¹³⁶Xe TPC

► **LEGEND-1000** 1 ton ⁷⁶Ge

 $\leftarrow upgrade of LEGEND-200 \xrightarrow{76} Ge semiconductor$

Started data taking very recently

Towards the bottom of the IO region

XENONnT + LUX-ZEPLIN + DARWIN = XLZD

Future DM detector possibly functioning as high sensitive $0\nu\beta\beta$ experiment

Future perspectives

▷ Current most stringent limit is at $T_{1/2} > 2.3 \times 10^{26} \text{ yr} \rightarrow m_{\beta\beta} < (36 - 156) \text{meV}$

Next-generation detectors reach the bottom of IO and a significant part of NO

➤ LEGEND-1000, nEXO and XLZD explore the NO

 $\checkmark 0\nu\beta\beta$ is discovered in the IO region \rightarrow identify LNV physics $\thickapprox 0\nu\beta\beta$ is not discovered in IO region \rightarrow increase scale and sensitivity of experiments

! Next-next-generation experiments ready by time ton-scale experiments complete !

Thank you for your attention!

Backup slides

KamLAND-Zen upgrade

- ➤ KamLAND2-Zen
 - → 1000 kg enriched Xenon
 - → Improved energy resolution: $2\nu\beta\beta$ background reduced
 - \rightarrow Scintillating inner balloon

$$T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr} \longrightarrow T_{1/2}^{0\nu} > 2 \times 10^{27} \text{ yr}$$
$$\langle m_{\beta\beta} \rangle \sim (36 - 156) \text{ meV} \longrightarrow \langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$$

Possible detector locations and muon flux

Agostini, Matteo, et al. Rev. Mod. Phys. 95, 025002

(2023)

$0\nu\beta\beta$ detectors and laboratory specifications

Laboratory	Country	Experiment(s)	Access	Depth
Laboratoire Souterrain de Modane (LSM)	France	CUPID-Mo, SuperNEMO	Horizontal	4,800
Laboratorio Subter- raneo de Canfranc (LSC)	Spain	NEXT-WHITE, NEXT-100, NEXT-HD module 1	Horizontal	2450
Yangyang Underground Laboratory	South Korea	AMoRE	Horizontal	2000
Kamioka Observatory	Japan	KamLAND-Zen, KamLAND2-Zen, CANDLES	Horizontal	2700
China Jinping Under- ground Laboratory (CJPL)	China	PandaX-III	Horizontal	6700
Sudbury Neutrino Ob- servatory (SNOLAB)	Canada	SNO+, nEXO, LEGEND- 1000	Vertical	6010
Sanford Underground Research Facility (SURF)	USA	Majorana Demonstrator, Theia	Vertical	4300
Gran Sasso National Laboratory (LNGS)	Italy	CUORE, CUPID, GERDA, LEGEND-200, LEGEND- 1000	Horizontal	3400
Waste Isolation Pilot Plant (WIPP)*	USA	EXO-200	Vertical	2000

Radioactive and Solar Backgrounds

Agostini, Matteo, et al. Rev. Mod. Phys. 95, 025002

$0\nu\beta\beta$ detector limits

$0\nu\beta\beta$ detector limits

FIG. 20 Fundamental parameters driving the sensitive background and exposure, and consequently the sensitivity, of recent and future phases of existing experiments (see Eq. 47). Red bars are used for 76 Ge experiments, orange for 136 Xe, blue for 130 Te, green for 100 Mo, and sepia for 82 Se. Similar exposures are achieved with high mass but poorer energy resolution and efficiency by gas and liquid detectors, or with small mass but high resolution and efficiency by solid state detectors. The sensitive exposure is computed for one year of livetime. Ligher shades indicate experiments which are under construction or proposed.

Agostini, Matteo, et al. Rev. Mod. Phys. 95, 025002

 76 Ge

136**Xe**

 $^{130}{\rm Te}$

¹⁰⁰Mo

⁸²Se

Future and current detector limits

Experiment	Isotope	Sensitivity	limit (90% CL)	Exposure time	Reference
		$T_{1/2}^{0\nu}$ [year]	$m_{\beta\beta}$ [meV]	[year]	
DARWIN (baseline)	¹³⁶ Xe	$2.4 imes 10^{27}$	18-46	10	this work
DARWIN (v dominated)	¹³⁶ Xe	6.2×10^{27}	11-28	10	this work
KamLAND2-Zen	¹³⁶ Xe	6×10^{26}	37-91	5	[37]
PandaX-III	¹³⁶ Xe	1×10^{27}	28-71	3	[9]
NEXT-HD	¹³⁶ Xe	3×10^{27}	16-41	10	[8]
nEXO	¹³⁶ Xe	9.2×10^{27}	9-23	10	[10]
SNO+-II	¹³⁰ Te	7×10^{26}	20-70	5	[37]
AMoRE-II	¹⁰⁰ Mo	5×10^{26}	15-30	5	[37]
CUPID	¹³⁰ Te / ¹⁰⁰ Mo	$(2-5) \times 10^{27}$	6-17	10	[37]
LEGEND-1000	⁷⁶ Ge	1×10^{28}	11-28	10	[37]

Isotope	Technique	$T_{1/2}^{0\nu}$	$m_{\beta\beta}$ (eV)	Year Published
⁴⁸ Ca	CaF ₂ scint. crystals	$> 5.8 \times 10^{22} \text{ y}$	<3.5-22	2008 [65]
⁷⁶ Ge	⁷⁶ Ge detectors	$>1.8\times10^{26}~{\rm y}$	< 0.079-0.180	2020 [12]
^{82}Se	Zn ⁸² Se bolometers	$> 4.6 \times 10^{24} \text{ y}$	< 0.263 - 0.545	2022 [19]
^{96}Zr	Thin metal foil within TPC	$> 9.2 \times 10^{21} \text{ y}$	<3.9 - 19.5	2009 [66]
¹⁰⁰ Mo	Li ¹⁰⁰ MoO ₄ bolometers	$> 1.8 \times 10^{24} \text{ y}$	< 0.28-0.49	2022 [18]
¹¹⁶ Cd	¹¹⁶ CdWO ₄ scint. crystals	$> 2.2 \times 10^{23} \text{ y}$	<1.0-1.7	2018 [67]
¹²⁸ Te	TeO_2 bolometers	$> 3.6 \times 10^{24} \text{ y}$	< 1.5 - 4.0	2022 [68]
¹³⁰ Te	TeO_2 bolometers	$> 2.2 \times 10^{25} \text{ y}$	< 0.090 - 0.305	2022 [69]
¹³⁶ Xe	Liquid Xe scintillators	$> 2.3 \times 10^{26} \text{ y}$	< 0.036 - 0.156	2022 [13]
¹⁵⁰ Nd	Thin metal foil within TPC	$> 2 \times 10^{22} \text{ y}$	1.6 - 5.3	2016 [70]

Sensitive background and exposure for recent and future

experiments

NIVERSITY F AMSTERDAM

 76 Ge

136**Xe**

 $^{130}{\rm Te}$

¹⁰⁰Mo

⁸²Se

FIG. 21 Sensitive background and exposure for recent and future experiments. The grey dashed lines indicate specific discovery sensitivity values on the $0\nu\beta\beta$ -decay half-life. The colored dashed line indicate the half-life sensitivities required to test the bottom of the inverted ordering scenario for ⁷⁶Ge, ¹³⁶Xe, ¹³⁰Te ¹⁰⁰Mo, and ⁸²Se, assuming for each isotope the largest NME value among the QRPA calculations listed in Tab. I. A livetime of 10 yr is assumed except for completed experiments, for which the final reported exposure is used.

neutrinoless double-beta decay." arXiv preprint arXiv:2202.01787 (2022)

34

KamLAND-Zen background visualisation at IB region

Nikhef UNIVERSITY OF AMSTERDAM

KamLAND-Zen data visualization

Nik

Which isotope is the best choice for detecting $0\nu\beta\beta$

Other isotopes and muon spallation products

Double-beta candidate	Q-value (MeV)	Phase space $G_{01}(y^{-1})$	Isotopic abundance (%)	Enrichable by centrifugation	Indicative cost normalized to Ge
⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	No	_
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes	1
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes	1
⁹⁶ Zr	3.35037 (289)	5.02×10^{-14}	2.8	No	_
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes	1
116Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes	3
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes	0.2
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes	0.1
¹⁵⁰ Nd	3.37138 (20)	1.54×10^{-13}	5.6	No	_

Table 4: Relevant parameters and features of the "magnificent nine" double-beta decay candidates.

Table 1 The most experimentally feasible isotopes and their key features

Isotope	Abundance (%)	$Q_{\beta\beta}$ (MeV)	$G^{2\nu}$ (10 ⁻¹⁸ year ⁻¹)
⁴⁸ Ca	0.187	4.263	15.6
⁷⁶ Ge	7.8	2.039	0.0482
⁸² Se	9.2	2.998	1.60
⁹⁶ Zr	2.8	3.348	7.83
¹⁰⁰ Mo	9.6	3.035	4.13
116Cd	7.6	2.813	3.18
¹³⁰ Te	34.08	2.527	1.53
¹³⁶ Xe	8.9	2.459	1.43
¹⁵⁰ Nd	5.6	3.371	36.4

The phase-space factors $G^{2\nu}$ are from Reference 4. $G^{2\nu}$ for 96 Zr, 100 Mo, and 116 Cd are calculated within the single-state dominance model (see Section 3).

Isotope	Half-life (s)	Decay mode	Yield (total) (×10 ⁻⁷ $\mu^{-1}g^{-1}cm^2$)	Yield ($E > 3.5 \text{ MeV}$) (×10 ⁻⁷ $\mu^{-1}g^{-1}\text{cm}^2$)	Primary process
n			2030		
¹⁸ N	0.624	β-	0.02	0.01	¹⁸ O(n,p)
17N	4.173	$\beta^{-}n$	0.59	0.02	$^{18}O(n,n+p)$
16N	7.13	$\beta^-\gamma$ (66%), β^- (28%)	18	18	(n,p)
¹⁶ C	0.747	β^{-n}	0.02	0.003	$(\pi^{-}, n + p)$
15C	2.449	$\beta^{-}\gamma$ (63%), β^{-} (37%)	0.82	0.28	(n,2p)
¹⁴ B	0.0138	$\beta^-\gamma$	0.02	0.02	(n,3p)
13O	0.0086	β^+	0.26	0.24	$(\mu^{-}, p + 2n + \mu^{-} + \pi^{-})$
¹³ B	0.0174	β^{-}	1.9	1.6	$(\pi^{-}, 2p + n)$
¹² N	0.0110	β^+	1.3	1.1	$(\pi^+, 2p + 2n)$
¹² B	0.0202	β^{-}	12	9.8	$(n, \alpha + p)$
¹² Be	0.0236	β^{-}	0.10	0.08	$(\pi^{-}, \alpha + p + n)$
11Be	13.8	β^{-} (55%), $\beta^{-}\gamma$ (31%)	0.81	0.54	$(n,\alpha + 2p)$
11Li	0.0085	β^{-n}	0.01	0.01	$(\pi^+, 5p + \pi^+ + \pi^0)$
°C	0.127	β^+	0.89	0.69	$(n,\alpha + 4n)$
⁹ Li	0.178	$\beta^{-}n$ (51%), β^{-} (49%)	1.9	1.5	$(\pi^{-}, \alpha + 2p + n)$
⁸ B	0.77	β^+	5.8	5.0	$(\pi^+, \alpha + 2p + 2n)$
⁸ Li	0.838	β^{-}	13	11	$(\pi^{-}, \alpha + {}^{2}H + p + n)$
⁸ He	0.119	$\beta^-\gamma~(84\%),\beta^-n~(16\%)$	0.23	0.16	$(\pi^{-}, {}^{3}\mathrm{H} + 4p + n)$
15O			351		(γ,n)
¹⁵ N			773		(γ, p)
14O			13		(n,3n)
14N			295		$(\gamma, n+p)$
14C			64		(n, n + 2p)
¹³ N			19		$(\gamma,^{3}H)$
¹³ C			225		$(n,^{2}H + p + n)$
¹² C			792		(γ, α)
¹¹ C			105		$(n,\alpha + 2n)$
11B			174		$(n,\alpha + p + n)$
^{10}C			7.6		$(n,\alpha + 3n)$
^{10}B			77		$(n,\alpha + p + 2n)$
¹⁰ Be			24		$(n,\alpha + 2p + n)$
⁹ Be			38		$(n,2\alpha)$
sum			3015	50	

Xenon spallation FLUKA simulations

TABLE IX. Simulated production rate of dominant isotopes in $2.35 \le E \le 2.70$ MeV in Xe-LS.

< ¹⁴⁰	
	10^{-1} 10^{-1}
100	10^{5}
	10×10^{10}
80	- 1
60	10-1
	10^{-2}
	10^{-3}
20	10-4
	10^{-5}
0 10 20 30 40 50 60	0 10

Nikh

UNIVERSITY OF AMSTERDAM

			(kton	$day)^{-1}$
	$\tau_{1/2}$ (s)	$Q({ m MeV})$	ROI	Total
⁸⁸ Y	9.212×10^{6}	$3.62 (EC/\beta^+ \gamma)$	0.110	0.136
$90m^1$ Zr	8.092×10^{-1}	$2.31(\mathrm{IT})$	0.012	0.093
⁹⁰ Nb	$5.256 imes 10^4$	$6.11 \left(\text{EC} / \beta^+ \gamma \right)$	0.024	0.095
⁹⁶ Tc	3.698×10^5	$2.97 \left(\text{EC} / \beta^+ \gamma \right)$	0.012	0.059
^{98}Rh	5.232×10^{2}	5.06 $(EC/\beta^+\gamma)$	0.011	0.076
^{100}Rh	7.488×10^4	$3.63 (EC/\beta^+\gamma)$	0.088	0.234
^{104}Ag	4.152×10^3	$4.28 \left(\text{EC} / \beta^+ \gamma \right)$	0.012	0.160
104m1Ag	2.010×10^3	$4.28 \left(\text{EC} / \beta^+ \gamma \right)$	0.018	0.111
¹⁰⁷ In	1.944×10^3	$3.43 (EC/\beta^+ \gamma)$	0.019	0.135
108In	3.480×10^3	5.16 $(EC/\beta^+\gamma)$	0.089	0.194
¹¹⁰ In	1.771×10^4	$3.89 \left(\text{EC} / \beta^+ \gamma \right)$	0.053	0.236
110m1 In	4.146×10^3	$3.89 \left(\text{EC} / \beta^+ \gamma \right)$	0.066	0.351
^{109}Sn	1.080×10^3	$3.85 \left(\text{EC} / \beta^+ \gamma \right)$	0.027	0.122
^{113}Sb	4.002×10^2	$3.92 \left(\text{EC} / \beta^+ \gamma \right)$	0.036	0.231
^{114}Sb	2.094×10^2	5.88 $(EC/\beta^+\gamma)$	0.020	0.297
^{115}Sb	1.926×10^3	$3.03 \left(\text{EC} / \beta^+ \gamma \right)$	0.031	0.839
^{116}Sb	9.480×10^2	$4.71 \left(\text{EC} / \beta^+ \gamma \right)$	0.071	0.939
^{118}Sb	2.160×10^2	$3.66 (EC/\beta^+\gamma)$	0.165	1.288
^{124}Sb	$5.201 imes 10^6$	$2.90 \left(\text{EC} / \beta^{-} \gamma \right)$	0.016	0.054
$^{115}\mathrm{Te}$	3.480×10^2	$4.64 \left(\text{EC} / \beta^+ \gamma \right)$	0.012	0.124
¹¹⁷ Te	3.720×10^3	$3.54 (EC/\beta^+ \gamma)$	0.052	0.594
¹¹⁹ I	1.146×10^3	$3.51 \left(\text{EC} / \beta^+ \gamma \right)$	0.053	0.533
^{120}I	4.896×10^3	5.62 $(EC/\beta^+\gamma)$	0.091	0.953
^{122}I	2.178×10^2	$4.23 \left(\text{EC} / \beta^+ \gamma \right)$	0.289	1.965
^{124}I	3.608×10^5	$3.16 \left(\text{EC} / \beta^+ \gamma \right)$	0.190	1.654
¹³⁰ I	4.450×10^4	$2.95(\beta^-\gamma)$	0.195	1.188
^{132}I	8.262×10^3	$3.58(\beta^-\gamma)$	0.148	0.427
^{134}I	3.150×10^3	$4.18(\beta^{-}\gamma)$	0.043	0.183
$^{121}\mathrm{Xe}$	2.406×10^3	$3.75 (EC/\beta^+ \gamma)$	0.100	0.540
^{125}Cs	2.802×10^3	$3.09 (EC/\beta^+\gamma)$	0.012	0.266
^{126}Cs	9.840×10^{1}	$4.82 (EC/\beta^+ \gamma)$	0.011	0.080
^{128}Cs	2.196×10^2	$3.93 \left(\text{EC} / \beta^+ \gamma \right)$	0.031	0.229

High energetic muons flying through the detector

Muon track reconstruction and induced showers

O. Hideyoshi, High Sensitivity Search for Neutrinoless Double-Beta Decay in KamLAND-Zen with Double Amount of 136Xe. PhD thesis, Tohoku University, 2020. S. W. Li and J. F. Beacom, "Spallation backgrounds in superkamiokande are made in muon-induced showers," *Physical Review D*, vol. 91, no. 10, p. 105005, 2015

High energetic muons flying through the detector

Triple coincidence tagging of muon spallation products

O. Hideyoshi, High Sensitivity Search for Neutrinoless Double-Beta Decay in KamLAND-Zen with Double Amount of 136Xe. PhD thesis, Tohoku University, 2020.

TABLE IV Fundamental parameters driving the sensitive background and exposure of recent and future phases of existing experiments. The last two columns report the discovery sensitivity on the $0\nu\beta\beta$ -decay half-life for 10 years of livetime, and the corresponding sensitivity on $m_{\beta\beta}$ for the range of NMEs specified in Tab. I. For completed experiments, sensitivities are computed using the reported final exposure. MJD, KLZ, and SuperNEMO-D refer to the MAJORANA DEMONSTRATOR, KamLAND-Zen, and the SuperNEMO Demonstrator, respectively.

				$m_{ m iso}$	$\varepsilon_{\rm act}$	$\varepsilon_{\mathrm{cont}}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{\mathrm{ROI}}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
Experiment	Isotope	Status	Lab	[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr}\right]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	$[\mathrm{meV}]$
High-purity Ge det	tectors (See	c. VI.B)													
GERDA-II	76 Ge	completed	LNGS	$4.5\cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2\cdot 10^{-4}$	$1.1\cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	76 Ge	completed	SURF	$3.1\cdot 10^2$	91	91	86	1.1	-2,2	95	212	$3.3\cdot10^{-3}$	$7.1\cdot10^{-1}$	$4.7\cdot 10^{25}$	149 - 355
LEGEND-200	76 Ge	construction	LNGS	$2.4\cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2\cdot 10^4$	92	92	90	1.1	$^{-2,2}$	95	8736	$4.9\cdot 10^{-6}$	$4.3\cdot 10^{-2}$	$1.3\cdot 10^{28}$	9-21
Xenon time project	tion chamb	pers (Sec. VI.C)													
EXO-200	136 Xe	completed	WIPP	$1.2\cdot 10^3$	46	100	84	31	-2,2	95	438	$4.7 \cdot 10^{-2}$	$2.1\cdot10^{+1}$	$2.4\cdot 10^{25}$	111 - 477
nEXO	136 Xe	proposed	SNOLAB	$3.4\cdot 10^4$	64	100	66	20	-2,2	95	13700	$4.0\cdot10^{-5}$	$5.5\cdot10^{-1}$	$7.4\cdot10^{27}$	6-27
NEXT-100	136 Xe	construction	LSC	$6.4\cdot 10^2$	88	76	49	10	-1.0, 1.8	80	167	$5.9\cdot10^{-3}$	$9.9\cdot10^{-1}$	$7.0\cdot 10^{25}$	66-281
NEXT-HD	136 Xe	proposed		$7.4\cdot 10^3$	95	89	44	7.7	-0.5, 1.7	65	1809	$4.0\cdot10^{-5}$	$7.2\cdot10^{-2}$	$2.2\cdot 10^{27}$	12-50
PandaX-III-200	136 Xe	construction	CJPL	$1.3\cdot 10^3$	77	74	65	31	-1.2, 1.2	76	374	$3.0 \cdot 10^{-3}$	$1.1 \cdot 10^{+0}$	$1.5\cdot 10^{26}$	45-194
LZ-nat	136 Xe	construction	SURF	$4.7\cdot 10^3$	14	100	80	25	-1.4, 1.4	84	440	$1.7 \cdot 10^{-2}$	$7.5 \cdot 10^{+0}$	$7.2\cdot 10^{25}$	64-277
LZ-enr	136 Xe	proposed	SURF	$4.6\cdot 10^4$	14	100	80	25	-1.4, 1.4	84	4302	$1.7\cdot 10^{-3}$	$7.3\cdot 10^{+0}$	$7.1\cdot 10^{26}$	20-87
Darwin	$^{136}\mathrm{Xe}$	proposed		$2.7\cdot 10^4$	13	100	90	20	-1.2, 1.2	76	2312	$3.5\cdot 10^{-4}$	$8.0\cdot 10^{-1}$	$1.1\cdot 10^{27}$	17-72
Large liquid scintil	lators (Sec	. VI.D)													
KLZ-400	136 Xe	completed	Kamioka	$2.5\cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.8\cdot10^{-3}$	$4.4 \cdot 10^{+0}$	$3.3\cdot 10^{25}$	95-408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	55	100	100	105	0, 1.4	42	1143	$5.5\cdot10^{-3}$	$6.2\cdot10^{+0}$	$2.0\cdot 10^{26}$	38 - 164
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot10^{-4}$	$6.5 \cdot 10^{-1}$	$1.1\cdot 10^{27}$	17-71
SNO+I	$^{130}\mathrm{Te}$	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot10^{-3}$	$9.7\cdot10^{+0}$	$1.8\cdot 10^{26}$	31-144
SNO+II	$^{130}\mathrm{Te}$	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot10^{+1}$	$5.7\cdot 10^{26}$	17-81
Cryogenic calorime	eters (Sec.	VI.E)													
CUORE	¹³⁰ Te	taking data	LNGS	$1.6\cdot 10^3$	100	88	92	3.2	-1.4, 1.4	84	1088	$9.1 \cdot 10^{-2}$	$9.9\cdot10^{+1}$	$5.1\cdot 10^{25}$	58-270
CUPID-0	82 Se	completed	LNGS	$6.2\cdot 10^1$	100	81	86	8.5	-2,2	95	41	$2.8 \cdot 10^{-2}$	$1.2 \cdot 10^{+0}$	$4.4\cdot 10^{24}$	283 - 551
CUPID-Mo	^{100}Mo	completed	LSM	$2.3 \cdot 10^1$	100	76	91	3.2	-2,2	95	15	$1.7 \cdot 10^{-2}$	$2.5 \cdot 10^{-1}$	$1.7\cdot 10^{24}$	293-858
CROSS	^{100}Mo	construction	LSC	$4.8\cdot 10^1$	100	75	90	2.1	-2,2	95	31	$2.5\cdot 10^{-4}$	$7.6 \cdot 10^{-3}$	$4.9\cdot10^{25}$	54-160
CUPID	^{100}Mo	proposed	LNGS	$2.5 \cdot 10^3$	100	79	90	2.1	-2,2	95	1717	$2.3\cdot 10^{-4}$	$4.0 \cdot 10^{-1}$	$1.1\cdot 10^{27}$	12-34
AMoRE-II	^{100}Mo	proposed	Yemilab	$1.1\cdot 10^3$	100	82	91	2.1	-2,2	95	760	$2.2\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$6.7\cdot 10^{26}$	15-43
Tracking calorimet	ers (Sec.	/I.F)													
NEMO-3	¹⁰⁰ Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6, 1.1	42	3	$9.4\cdot10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505 - 1485
SuperNEMO-D	82 Se	construction	LSM	$8.5\cdot 10^1$	100	100	28	83	-4.2, 2.4	64	15	$3.3\cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	82 Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1, 2.8	54	185	$5.3\cdot10^{-3}$	$9.8 \cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

Agostini, Matteo, et al. Rev. Mod. Phys. 95, 025002

(2023)

53

42

Experiment	Isotope	Mass	Technique	Present Status	Location
CANDLES-III [124]	⁴⁸ Ca	305 kg	^{nat} CaF ₂ scint. crystals	Operating	Kamioka
CDEX-1 [125]	76 Ge	1 kg	^{enr} Ge semicond. det.	Prototype	CJPL
CDEX-300 [125]	76 Ge	225 kg	^{enr} Ge semicond. det.	Construction	CJPL
LEGEND-200 [16]	76 Ge	200 kg	^{enr} Ge semicond. det.	Commissioning	LNGS
LEGEND-1000 [16]	76 Ge	1 ton	^{enr} Ge semicond. det.	Proposal	
CUPID-0 [19]	82 Se	10 kg	Zn ^{enr} Se scint. bolometers	Prototype	LNGS
SuperNEMO-Dem [126]	⁸² Se	7 kg	^{enr} Se foils/tracking	Operation	Modane
SuperNEMO [126]	⁸² Se	100 kg	^{enr} Se foils/tracking	Proposal	Modane
Selena [127]	82 Se		enrSe, CMOS	Development	
IFC [128]	82 Se		ion drift SeF_6 TPC	Development	
CUPID-Mo [17]	¹⁰⁰ Mo	4 kg	Li ^{enr} MoO ₄ ,scint. bolom.	Prototype	LNGS
AMoRE-I [129]	¹⁰⁰ Mo	6 kg	⁴⁰ Ca ¹⁰⁰ MoO ₄ bolometers	Operation	YangYang
AMoRE-II [129]	¹⁰⁰ Mo	200 kg	⁴⁰ Ca ¹⁰⁰ MoO ₄ bolometers	Construction	Yemilab
CROSS [130]	¹⁰⁰ Mo	5 kg	Li ₂ ¹⁰⁰ MoO ₄ , surf. coat bolom.	Prototype	Canfranc
BINGO [131]	^{100}Mo		$Li^{enr}MoO_4$	Development	LNGS
CUPID [28]	^{100}Mo	450 kg	Li ^{enr} MoO ₄ ,scint. bolom.	Proposal	LNGS
China-Europe [132]	^{116}Cd		^{enr} CdWO ₄ scint. crystals	Development	CJPL
COBRA-XDEM [133]	¹¹⁶ Cd	0.32 kg	^{nat} Cd CZT semicond. det.	Operation	LNGS
Nano-Tracking [134]	¹¹⁶ Cd		^{nat} CdTe. det.	Development	
TIN.TIN [135]	124 Sn		Tin bolometers	Development	INO
CUORE [10]	$^{130}{ m Te}$	1 ton	TeO ₂ bolometers	Operating	LNGS
SNO+[136]	¹³⁰ Te	3.9 t	0.5-3% ^{nat} Te loaded liq. scint.	Commissioning	SNOLab
nEXO [29]	¹³⁶ Xe	5 t	Liq. ^{enr} Xe TPC/scint.	Proposal	
NEXT-100 [137]	¹³⁶ Xe	100 kg	gas TPC	Construction	Canfranc
NEXT-HD [137]	136 Xe	1 ton	gas TPC	Proposal	Canfranc
AXEL [138]	136 Xe		gas TPC	Prototype	
KamLAND-Zen-800 [13]	¹³⁶ Xe	745 kg	^{enr} Xe disolved in liq. scint.	Operating	Kamioka
KamLAND2-Zen [41]	¹³⁶ Xe		^{enr} Xe disolved in liq. scint.	Development	Kamioka
LZ [139]	¹³⁶ Xe	600 kg	Dual phase Xe TPC, nat./enr. Xe	Operation	SURF
PandaX-4T [119]	¹³⁶ Xe	3.7 ton	Dual phase nat. Xe TPC	Operation	CJPL
XENONnT [140]	¹³⁶ Xe	5.9 ton	Dual phase Xe TPC	Operating	LNGS
DARWIN [141]	¹³⁶ Xe	50 ton	Dual phase Xe TPC	Proposal	LNGS
R2D2 [142]	¹³⁶ Xe		Spherical Xe TPC	Development	
LAr TPC [143]	¹³⁶ Xe	kton	Xe-doped LR TPC	Development	
NuDot [144]	Various		Cherenkov and scint. in liq. scint.	Development	
Theia [145]	Xe or Te		Cherenkov and scint. in liq. scint.	Development	
JUNO [146]	Xe or Te		Doped liq. scint.	Development	
Slow-Fluor [147]	Xe or Te		Slow Fluor Scint.	Development	

Adams, C., et al. "Neutrinoless Double Beta Decay." arXiv preprint arXiv:2212.11099 (2022).

Experimental design criteria for $0\nu\beta\beta$

Direct searches: kinematic parameters of the two electrons

 \rightarrow Total energy and individual electron paths

$$T_{1/2}^{0\nu} = \ln 2 \frac{N_A}{W} \left(\frac{a \cdot \epsilon \cdot M}{N_{\text{obs}}} \right) t \quad \propto \begin{cases} a \epsilon \cdot M t \\ a \epsilon \sqrt{\frac{M t}{N_{\text{bkg}} \cdot \Delta E}} \end{cases}$$

Μ

ΔE

N_{bkg}

Detector and isotope choice depending on:

- High isotopic abundance a
- Deployment in large quantity
- High-resolution detector
- Low-background conditions

