Introducing the VSI LHCb Team

Kristof De Bruyn

VSI meeting January 30th, 2023

The VSI LHCb Team

Antonio PellegrinoProfessor by special appointment
SciFi detector

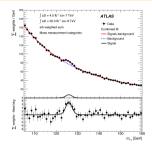
Gerco Ondewater Associate Professor Director School of Science and Engineering

Kristof De Bruyn Assistant Professor VELO detector & Study of $B_c^+ \to au
u$

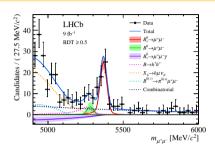
Mick Mulder Postdoc Study of Λ_b decays

Jan de Boer PhD SciFi detector & Study of Λ_b decays

Maria Domenica Galati PhD VELO detector & Study of $B_c^+ \to au
u$



Andrej Sarnatskiy MSc student Production of B_c^+ at LHCb


The Large Hadron Collider

Two Complementary Strategies for the Large Hadron Collider

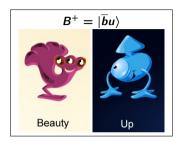
arxiv:1406.3827

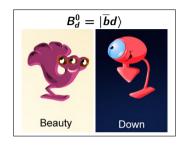
LHCb-PAPER-2021-007

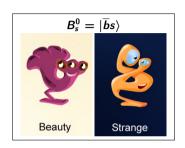
Direct Searches (High Energy Frontier*):

Search for new on-shell resonances

- ► *Bump*-hunting
 - Select x leptons + y jets(= observed decay products)
 - Require some missing energy (= undetected decay products)

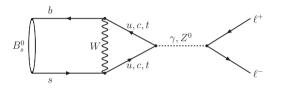

Not to be confused with the VSI base units

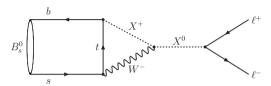

Indirect Searches (Precision Frontier*):


Search for differences with SM predictions

- Higgs Sector
- ► (Heavy) Flavour Sector
 - Asymmetries
 - Rare decays

The B Meson Family

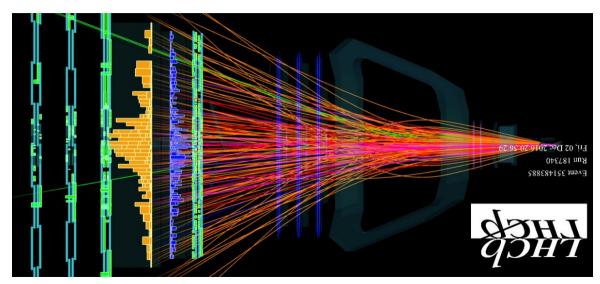


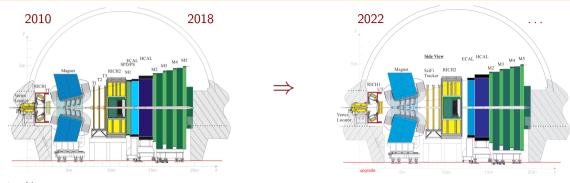

- ▶ Unstable particles (lifetime $\approx 1.5 \times 10^{-12}$ seconds)
- → Experimental advantage: can fly 1 to 2 cm away from production point before decaying
- ► More than 250 different decay paths
- ▶ Observables: branching fractions, asymmetries, angular correlations, . . .
- ► Allows us to probe many SM parameters and perform high precision tests

The Power of Indirect Searches

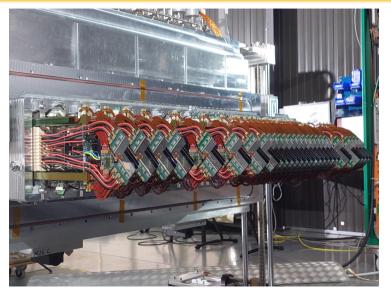
Standard Model

New Physics


- ► Sensitive to new virtual contributions
 - → Both at tree level and in loops
- ► Can probe energy scales much beyond LHC energy limit
- Many NP models predict new heavy particles that prefer coupling to third generation
- ► Matter-antimatter differences are largest in transitions involving third generation


Beauty

The Large Hadron Collider beauty Experiment



Upgrading the LHCb Detector

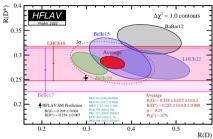
- ► Aim:
 - **I** Significantly reduce the statistical uncertainty on the measurements (\sqrt{n})
 - 2 A more flexible trigger to select interesting events and reject uninteresting ones
- ► To achieve this:
 - ightarrow Increase the number of interactions per proton bunch crossing from 1.1 to 5
 - → Upgrade complete detector to triggerless read-out at 40MHz
- ► Requires a complete redesign of the data acquisition (Hardware + Software)

The Vertex Locator

The Team:

- ► Construction
- Commissioning

The Scintilating-Fibre (SciFi) Detector


The Team:

- ► Construction
- Commissioning

Testing Lepton Flavour Universality

▶ Do electrons, muons and tau leptons behave the same?

The Team:

 $B_c^+ o au
u$

 Λ_b Decays