OSAF Topical Lectures on Effective Field Theories

 Application of EFTs for B PhysicsKristof De Bruyn

Groningen - April 13th, 2023

A Simple Weak Interaction

Energy Scales:

- Interaction involves 2 very distinct energy scales
- Mass of the W boson: 80.377 GeV
- Mass of the initial quarks
- Charm: 1.27 GeV
- Beauty: 4.18 GeV
\Rightarrow Interaction is highly virtual

Let's have a closer look ...

Decay Amplitude:

$$
\begin{equation*}
A=\underbrace{\left(\bar{s}_{\beta} c_{\alpha}\right) V_{-\mathrm{A}}}_{\text {initial state }} \times \underbrace{\frac{g_{\mathrm{EW}} V_{c s}^{*}}{2 \sqrt{2}} \delta_{\alpha \beta}}_{\text {vertex }} \times \underbrace{\frac{1}{k^{2}-m_{W}^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}\right)}_{\text {propagator }} \times \underbrace{\frac{g_{\mathrm{EW}} V_{u d}}{2 \sqrt{2}} \delta_{\gamma \delta}}_{\text {vertex }} \times \underbrace{\left(\bar{u}_{\delta} d_{\gamma}\right) \mathrm{v}-\mathrm{A}}_{\text {final state }} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A=\underbrace{\left(\bar{s}_{\beta} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}}_{\text {initial state }} \times \underbrace{\frac{g_{\mathrm{EW}} V_{c s}^{*}}{2 \sqrt{2}} \delta_{\alpha \beta}}_{\text {vertex }} \times \underbrace{\frac{1}{k^{2}-m_{W}^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}\right)}_{\text {propagator }} \times \underbrace{\frac{g_{\mathrm{EW}} V_{u d}}{2 \sqrt{2}} \delta_{\gamma \delta}}_{\text {vertex }} \times \underbrace{\left(\bar{u}_{\delta} d_{\gamma}\right)_{\mathrm{V}-\mathrm{A}}}_{\text {final state }} \tag{2}
\end{equation*}
$$

Explanations:

- $\alpha, \beta, \gamma, \delta$ are colour indices
- μ, ν are Lorentz indices
- $g^{\mu \nu}$ is the metric tensor
- k is the momentum transfer
- V-A represents the Vector-Axial-Vector Lorentz structure:

$$
\begin{equation*}
(\bar{q} p)_{\vee-\mathrm{A}} \equiv \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) p \tag{3}
\end{equation*}
$$

Interaction Hamiltonian

- The Standard Model Hamiltonian for the $c \bar{s} \rightarrow u \bar{d}$ process

$$
\begin{equation*}
\mathcal{H}=\frac{g_{\mathrm{EW}}^{2}}{8} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \frac{1}{k^{2}-m_{W}^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}\right) \tag{4}
\end{equation*}
$$

- Use that $k=\mathcal{O}\left(m_{q}\right) \ll m_{W}$

$$
\begin{equation*}
\frac{1}{k^{2}-m_{W}^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}\right) \quad \stackrel{k \ll m_{W}}{ } \quad \frac{g^{\mu \nu}}{m_{W}^{2}}+\mathcal{O}\left(\frac{k^{2}}{m_{W}^{2}}\right) \tag{5}
\end{equation*}
$$

- Introduce the Fermi constant

$$
\begin{equation*}
G_{F} \equiv \frac{\sqrt{2} g_{E W}^{2}}{8 m_{W}^{2}} \tag{6}
\end{equation*}
$$

- End up with the leading order in a series expansion

$$
\begin{equation*}
\mathcal{H}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}}+\mathcal{O}\left(\frac{k^{2}}{m_{W}^{2}}\right) \tag{7}
\end{equation*}
$$

From Full to Effective Theory

- Full Standard Model theory

$$
\begin{equation*}
\mathcal{H}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}}+\mathcal{O}\left(\frac{k^{2}}{m_{W}^{2}}\right) \tag{8}
\end{equation*}
$$

- Interpretation: Short-range exchange force approximately behaves point interaction
- Note: expression remains exact until you neglect $\mathcal{O}\left(\frac{k^{2}}{m_{W}^{2}}\right)$!

$$
\begin{equation*}
\mathcal{H}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \tag{9}
\end{equation*}
$$

- This has become an effective local four-fermion interaction (cfr. Fermi's 1933 theory of β^{-}decay)

Effective Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{V-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \tag{10}
\end{equation*}
$$

- Introduce the notation

$$
\begin{equation*}
\mathcal{O}_{2} \equiv\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \quad \text { and } \quad C_{2}=1 \tag{11}
\end{equation*}
$$

- \mathcal{O}_{2} is referred to as an operator
- C_{2} is referred to as a Wilson coefficient
- End up with the formalism known as Operator Product Expansion

$$
\begin{equation*}
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d} C_{2} \mathcal{O}_{2} \tag{12}
\end{equation*}
$$

- We have completely removed the W-dependence from the theory ... or "integrated out" the W

Towards an Effective Field Theory

- Explicit W-exchange
- Calculate interaction using
$\mathcal{H}=\frac{g_{\mathrm{EW}}^{2}}{8} v_{C S}^{*} v_{u d}\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \frac{1}{k^{2}-m_{W}^{2}}\left(g^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}\right)$

Next-to-Leading Order QCD Diagrams: Vertex Correction

Next-to-Leading Order QCD Diagrams: Gluon Exchange I

Colour-Neutral Gluon

Coloured Gluon

Next-to-Leading Order QCD Diagrams: Gluon Exchange la

Next-to-Leading Order QCD Diagrams: Gluon Exchange Ib

- Contributes to both \mathcal{O}_{1} and \mathcal{O}_{2}
- Additional contributions to both C_{1} and C_{2}

An Effective Theory for the $c \bar{s} \rightarrow u \bar{d}$ Process

- The $c \bar{s} \rightarrow u \bar{d}$ process is described by effective Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left(C_{1} \mathcal{O}_{1}+C_{2} \mathcal{O}_{2}\right) \tag{13}
\end{equation*}
$$

- C_{j} are the Wilson coefficients
- \mathcal{O}_{j} are the current-current operators

$$
\begin{equation*}
\mathcal{O}_{1} \equiv\left(\bar{s}_{\beta} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\alpha} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \quad \mathcal{O}_{2} \equiv\left(\bar{s}_{\alpha} c_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \tag{14}
\end{equation*}
$$

- They differ in their colour structure
- In the absence of QCD: $C_{1}=0$ and $C_{2}=1$

Weak Effective Theory or Operator Product Expansion

- For each weak decay process, you can write down an effective Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{p q}^{*} V_{a b} \sum_{j} C_{j} \mathcal{O}_{j} \tag{15}
\end{equation*}
$$

- Which set of operators to include depends on the process
\rightarrow Linked to the set of possible Feynman diagrams

Hadronic Matric Element: From Operator to Observable

- Example: Branching fraction calculation:

$$
\left.\mathcal{B}(B \rightarrow f) \quad \leftrightarrow \quad \Gamma(B \rightarrow f) \quad \leftrightarrow \quad|A(B \rightarrow f)|^{2} \quad \leftrightarrow \quad\left|\langle f| \mathcal{H}_{\text {eff }}\right| B\right\rangle\left.\right|^{2} \quad \leftrightarrow \quad\langle f| \mathcal{O}_{j}|B\rangle
$$

- $\langle f| \mathcal{O}_{j}|B\rangle$ is known as the Hadronic Matrix Element
$-\langle f| \mathcal{O}_{j}|B\rangle$ contains the long-distance physics, including hadronisation process
- Non-perturbative nature require additional tricks and/or approximations: Lattice QCD, LCSR, HQET, HQE, ...
- Different energy scales allow different approximations
\rightarrow Techniques are often specific to one problem
\rightarrow What works for b-hadron decays need not apply to kaon physics

Weak Effective Theory

- For each weak decay process, you can write down an effective Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{p q}^{*} V_{a b} \sum_{j} C_{j} \mathcal{O}_{j} \tag{16}
\end{equation*}
$$

- Which set of operators to include depends on the process
\rightarrow Linked to the set of possible Feynman diagrams
- OPE separates long-distance physics $\left(\mathcal{O}_{j}\right)$ from short-distance physics $\left(C_{j}\right)$
- C_{j} only depend on the hard-scattering process and are thus universal
- Hadronic matrix elements are decay specific
\Rightarrow The OPE makes calculations of weak decays possible

Weak Effective Theory or Operator Product Expansion

- Ideal tool to search for beyond the Standard Model physics

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{p q}^{*} V_{a b} \sum_{j}\left(C_{j}^{\mathrm{SM}}+C_{j}^{\mathrm{NP}}\right) \mathcal{O}_{j} \tag{17}
\end{equation*}
$$

- Can calculate $C_{j}^{S M}$ to any desired precision, control the hadronic matrix elements $\Rightarrow C_{j}^{\mathrm{NP}}$ are the only unknowns
- Fitting this OPE model to experimental data allows to constrain $C_{j}^{\text {NP }}$
+ Model-independent approach
+ Straightforward to combine multiple measurements (branching fraction \& ratios, asymmetries, ...)
- Does not reveal the underlying theory, only the allowed interactions
- In general: Too many degrees of freedom
\rightarrow Need to be selective about the operators we do and do not include
\Rightarrow Difficult to interpret the significance

Example: Fit of the $b \rightarrow s \ell \ell$ Anomalies

Source: LHCb Flavour Anomaly Workshop 2021

$$
\mathcal{O}_{1}=\left(\bar{s}_{\alpha} u_{\beta}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}
$$

$$
\mathcal{O}_{2}=\left(\bar{s}_{\alpha} u_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left(\bar{u}_{\beta} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}}
$$

$$
\begin{aligned}
\mathcal{O}_{3} & =\left(\bar{s}_{\alpha} d_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q}\left(\bar{q}_{\alpha} q_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \\
\mathcal{O}_{4} & =\left(\bar{s}_{\alpha} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \\
\mathcal{O}_{5} & =\left(\bar{s}_{\alpha} d_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q}\left(\bar{q}_{\alpha} q_{\alpha}\right)_{\mathrm{V}+\mathrm{A}} \\
\mathcal{O}_{6} & =\left(\bar{s}_{\alpha} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{\mathrm{V}+\mathrm{A}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{7}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right) v-\mathrm{A} \\
& \sum_{q} e_{q}\left(\bar{q}_{\alpha} q_{\alpha}\right)_{\mathrm{V}+\mathrm{A}} \\
& \mathcal{O}_{8}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{\mathrm{V}+\mathrm{A}} \\
& \mathcal{O}_{9}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q} e_{q}\left(\bar{q}_{\alpha} \boldsymbol{q}_{\alpha}\right)_{\mathrm{V}-\mathrm{A}} \\
& \mathcal{O}_{10}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{\mathrm{V}-\mathrm{A}} \sum_{q} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}
\end{aligned}
$$

$\mathcal{O}_{7 V}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}(\bar{\ell} \ell)_{V}$
$\mathcal{O}_{7 \mathrm{~A}}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{A}}$

$$
\mathcal{O}_{9}=\left(\bar{b}_{\alpha} \boldsymbol{s}_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{V}}
$$

$$
\mathcal{O}_{10}=\left(\bar{b}_{\alpha} s_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{A}}
$$

$\mathcal{O}_{\Delta B=2}=\left(\bar{b}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{b}_{\alpha} d_{\alpha}\right)_{V-A}$

Magnetic Penguins

$$
\begin{aligned}
& \mathcal{O}_{7 \gamma}=\frac{e}{8 \pi^{2}} m_{b} \bar{s}_{\alpha} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b_{\alpha} F_{\mu \nu} \\
& \mathcal{O}_{8 G}=\frac{g}{8 \pi^{2}} m_{b} \bar{s}_{\alpha} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) T_{\alpha \beta}^{a} b_{\beta} G_{\mu \nu}^{a}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{9^{\prime}} & =\left(\bar{b}_{\alpha} s_{\alpha}\right)_{\mathrm{V}+\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{V}} \\
\mathcal{O}_{10^{\prime}} & =\left(\bar{b}_{\alpha} s_{\alpha}\right)_{\mathrm{V}+\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{A}} \\
\mathcal{O}_{S} & =\left(\bar{b}_{\alpha}\left(1+\gamma_{5}\right) s_{\alpha}\right)(\bar{\ell} \ell) \\
\mathcal{O}_{s^{\prime}} & =\left(\bar{b}_{\alpha}\left(1-\gamma_{5}\right) s_{\alpha}\right)(\bar{\ell} \ell) \\
\mathcal{O}_{P} & =\left(\bar{b}_{\alpha}\left(1+\gamma_{5}\right) s_{\alpha}\right)\left(\bar{\ell} \gamma_{5} \ell\right) \\
\mathcal{O}_{P^{\prime}} & =\left(\bar{b}_{\alpha}\left(1-\gamma_{5}\right) s_{\alpha}\right)\left(\bar{\ell} \gamma_{5} \ell\right) \\
\mathcal{O}_{T} & =\left(\bar{b}_{\alpha} \sigma^{\mu \nu} s_{\alpha}\right)\left(\bar{\ell} \sigma_{\mu \nu} \ell\right) \\
\mathcal{O}_{T 5} & =\left(\bar{b}_{\alpha} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) s_{\alpha}\right)\left(\bar{\ell} \sigma_{\mu \nu} \gamma_{5} \ell\right)
\end{aligned}
$$

Simplest Case: Purely Leptonic Decays

- Let's consider the decay $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$

Penguin Topologies

- In the Standard Model both diagrams correspond to operator $\mathcal{O}_{10}=\left(\bar{b}_{\alpha} s_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}(\bar{\ell} \ell)_{\mathrm{A}}$

Decay Constant: Linking Operator to Observable

- Left part of diagram contains quarks but no leptons: annihilation of the B_{s} meson into the vacuum state
- Right part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state
\Rightarrow Can factorise the calculation of hadronic matrix element into two parts

$$
\begin{equation*}
\left\langle\ell^{+} \ell^{-}\right| \mathcal{O}_{10}\left|B_{s}^{0}\right\rangle=\left\langle\ell^{+} \ell^{-}\right|(\bar{\ell} \ell)_{\mathrm{A}}|0\rangle \times\langle 0|\left(\bar{b}_{\alpha} s_{\alpha}\right)_{\mathrm{V}-\mathrm{A}}\left|B_{s}^{0}\right\rangle \tag{18}
\end{equation*}
$$

- For a pseudo-scalar P, second term is parametrised by the decay constant

$$
\begin{equation*}
\langle 0|\left(\bar{q} q^{\prime}\right)_{\mathrm{V}-\mathrm{A}}|P(p)\rangle=-i f_{P} p_{\mu} \tag{19}
\end{equation*}
$$

- The decay constant can be calculated on the lattice: See Flavour Lattice Averaging Group (FLAG)
- Footnote: Similar expressions exist for scalar or vector states

Simplest Case: Purely Leptonic Decays

- Standard Model expression for the branching fraction

$$
\begin{equation*}
\left.\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right|_{S M}=\frac{\tau_{B_{s}} G_{F}^{2} m_{W}^{4} \sin ^{4} \theta_{W}}{4 \pi^{5}} \times\left(\frac{G_{F}}{\sqrt{2}}\left|V_{t s} V_{t b}^{*}\right|\left|C_{10}^{S M}\right| f_{B_{s}}\right)^{2} \times m_{B_{s}} m_{\mu}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}} \tag{20}
\end{equation*}
$$

- Can still recognise the OPE using Wilson coefficients and operators
- Footnote: Expression for $C_{10}^{S M}$

$$
\begin{equation*}
C_{10}^{S M}=\frac{\eta_{Y} Y_{0}\left(x_{t}\right)}{\sin ^{2} \theta_{W}} \tag{21}
\end{equation*}
$$

- where Y_{0} is one of the Inami-Lim functions

$$
\begin{equation*}
Y_{0}\left(x_{t}\right)=\frac{x_{t}}{8}\left[\frac{4-x_{t}}{1-x_{t}}+\frac{3 x_{t}}{\left(1-x_{t}\right)^{2}} \ln x_{t}\right] \quad, \quad x_{t} \equiv\left[\frac{\bar{m}_{t}\left(\bar{m}_{t}\right)}{m_{W}}\right]^{2} \tag{22}
\end{equation*}
$$

More Complex Case: Semi-Leptonic Decays

- Top part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state
- Bottom part of diagram is transition from one quark state to another quark state
\Rightarrow Can factorise the calculation of hadronic matrix element into two parts

$$
\begin{equation*}
\left\langle D^{-} \ell^{+} \nu_{\ell}\right| \mathcal{O}\left|B_{d}^{0}\right\rangle=\left\langle\ell^{+} \nu_{\ell}\right|(\bar{\ell} \nu)|0\rangle \times\left\langle D^{-}\right|\left(\bar{b}_{\alpha} c_{\alpha}\right)\left|B_{d}^{0}\right\rangle \tag{23}
\end{equation*}
$$

Form Factor: Linking Operator to Observable

- The hadron-to-hadron transition is described by a Form Factor
- For a Pseudo-scalar to Pseudo-scalar transition

$$
\begin{equation*}
\left\langle P^{\prime}\left(p^{\prime}\right)\right|\left(\bar{q} \gamma_{\mu} \boldsymbol{q}|P(p)\rangle=\left[\left(p+p^{\prime}\right)_{\mu}-\frac{m_{P}^{2}-m_{P^{\prime}}^{2}}{q^{2}} q_{\mu}\right] f_{P \rightarrow P^{\prime}}^{+}\left(q^{2}\right)+\left[\frac{m_{P}^{2}-m_{P^{\prime}}^{2}}{q^{2}} q_{\mu}\right] f_{P \rightarrow P^{\prime}}^{0}\left(q^{2}\right)\right. \tag{24}
\end{equation*}
$$

- $q_{\mu} \equiv p_{\mu}-p_{\mu}^{\prime}$
- Form factors can be calculated on the lattice (high q^{2}) or using LCSR (low q^{2})
- Need to extrapolate to other q^{2} regions
- q^{2}-dependence can be fitted to experimental data, for example $\mathrm{d} \mathcal{B} / \mathrm{d}^{2}{ }^{2}$ spectra
- Normalisation factor $f_{P \rightarrow P^{\prime}}^{+/(0)}$ needs to come from theory calculations
- Footnote: Similar expressions exist for pseudo-scalar to vector transitions

The Most Complex Case: Non-Leptonic Decays

The Ideal Case:
Colour-Allowed
Tree Topology

- Imagine velocity of q_{2} and q_{3} much larger than velocity of q_{1}
$\Rightarrow q_{2}$ and q_{3} will separate from q_{1} before hadronisation takes place
- Expect no long-distance interactions between M_{1} and M_{2}
\Rightarrow Can factorise the calculation of hadronic matrix element into decay constant and form factors

$$
\begin{equation*}
\left\langle M_{1} M_{2}\right| \mathcal{O}\left|B_{q}\right\rangle=\left\langle M_{2}\right|\left(\bar{q}_{2} q_{1}\right)|0\rangle \times\left\langle M_{1}\right|\left(\bar{b} q_{1}\left|B_{q}\right\rangle=f_{M_{2}} \times f_{B_{q} \rightarrow M_{1}}^{+/ 0}\left(q^{2}\right)\right. \tag{25}
\end{equation*}
$$

The Most Complex Case: Non-Leptonic Decays

Every Other Case:

1 Explicitly account for non-factorisable corrections

2 Avoid observables that require absolute normalisation (i.e. branching fractions)

Use Clever Tricks!

- Exploit ratios (CP asymmetries, branching ratios, ...)
- Exploit flavour symmetries

When Does Factorisation Work?

Expected to Work Well

- Colour-allowed tree diagrams with $m_{M_{1}} \gg m_{M_{2}}$
- Examples: $B_{d}^{0} \rightarrow D^{-} \pi^{+}, B_{d}^{0} \rightarrow D^{-} K^{+}, B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}, B_{s}^{0} \rightarrow D_{s}^{-} K^{+}$

May or may not Work

- Colour-allowed tree diagrams with $m_{M_{1}} \approx m_{M_{2}}$
- Required separation still takes place, but q_{1} is now too fast to hadronise with the spectator quark
- Additional gluon exchanges expected to dissipate energy
- Examples: $B_{d}^{0} \rightarrow \pi^{-} \pi^{+}, B_{s}^{0} \rightarrow K^{-} K^{+}$

Not Expected to Work

- Colour-allowed tree diagrams with $m_{M_{1}} \ll m_{M_{2}}$
- Example: $B_{s}^{0} \rightarrow K^{-} D^{+}$
- Other decay topologies, like colour-suppressed tree diagrams, etc.
- Example: $B_{s}^{0} \rightarrow \bar{K}^{0} D^{0}, B_{d}^{0} \rightarrow K^{0} J / \psi$

