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A Simple Weak Interaction

c

s̄

u

d̄

W+

Energy Scales:
I Interaction involves 2 very distinct energy scales
I Mass of the W boson: 80.377 GeV
I Mass of the initial quarks

I Charm: 1.27 GeV
I Beauty: 4.18 GeV

⇒ Interaction is highly virtual
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Let’s have a closer look …
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s̄β

uγ

d̄δ

k

W+

Decay Amplitude:

A = (s̄βcα)V−A︸ ︷︷ ︸
initial state

× gEWV ∗
cs

2
√

2
δαβ︸ ︷︷ ︸

vertex

× 1
k2 − m2

W

(
gµν − kµkν

m2
W

)
︸ ︷︷ ︸

propagator

× gEWVud

2
√

2
δγδ︸ ︷︷ ︸

vertex

× (ūδdγ)V−A︸ ︷︷ ︸
final state

(1)
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Footnote on Notation

A = (s̄βcα)V−A︸ ︷︷ ︸
initial state

× gEWV ∗
cs

2
√

2
δαβ︸ ︷︷ ︸

vertex

× 1
k2 − m2

W

(
gµν − kµkν

m2
W

)
︸ ︷︷ ︸

propagator

× gEWVud

2
√

2
δγδ︸ ︷︷ ︸

vertex

× (ūδdγ)V−A︸ ︷︷ ︸
final state

(2)

Explanations:
I α, β, γ, δ are colour indices
I µ, ν are Lorentz indices
I gµν is the metric tensor
I k is the momentum transfer
I V−A represents the Vector–Axial-Vector Lorentz structure:

(q̄p)V−A ≡ q̄γµ(1 − γ5)p (3)
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Interaction Hamiltonian

I The Standard Model Hamiltonian for the cs̄ → ud̄ process

H =
g2

EW
8 V ∗

csVud(s̄αcα)V−A(ūβdβ)V−A
1

k2 − m2
W

(
gµν − kµkν

m2
W

)
(4)

I Use that k = O(mq) � mW

1
k2 − m2

W

(
gµν − kµkν

m2
W

) k�mW
−−−−−→ gµν

m2
W

+O
(

k2

m2
W

)
(5)

I Introduce the Fermi constant
GF ≡

√
2g2

EW
8m2

W
(6)

I End up with the leading order in a series expansion

H =
GF√

2
V ∗

csVud(s̄αcα)V−A(ūβdβ)V−A +O
(

k2

m2
W

)
(7)
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From Full to Effective Theory

I Full Standard Model theory

H =
GF√

2
V ∗

csVud(s̄αcα)V−A(ūβdβ)V−A +O
(

k2

m2
W

)
(8)

I Interpretation: Short-range exchange force approximately behaves point interaction
I Note: expression remains exact until you neglect O

(
k2

m2
W

)
!

⇓

H =
GF√

2
V ∗

csVud(s̄αcα)V−A(ūβdβ)V−A (9)

I This has become an effective local four-fermion interaction
(cfr. Fermi’s 1933 theory of β− decay)
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Effective Hamiltonian

H =
GF√

2
V ∗

csVud(s̄αcα)V−A(ūβdβ)V−A (10)

I Introduce the notation
O2 ≡ (s̄αcα)V−A(ūβdβ)V−A and C2 = 1 (11)

I O2 is referred to as an operator

I C2 is referred to as a Wilson coefficient

I End up with the formalism known as Operator Product Expansion

Heff =
GF√

2
V ∗

csVudC2O2 (12)

I We have completely removed the W -dependence from the theory … or “integrated out” the W
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Towards an Effective Field Theory

Full Standard Model Theory
cα

s̄α

uβ

d̄β

k

W+

I Explicit W -exchange
I Calculate interaction using

H =
g2
EW
8

V∗
cs Vud (s̄αcα)V−A(ūβdβ )V−A

1

k2 − m2
W

gµν −
kµkν

m2
W



Weak Effective Theory
cα

s̄α

uβ

d̄β

I Local 4-fermion interaction
I Calculate interaction using

H =
GF√

2
V ∗

csVudC2O2
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Next-to-Leading Order QCD Diagrams: Vertex Correction

Full Standard Model Theory
cα

s̄α

uβ

d̄β

W+

I Initial and final state
have independent colour indices

I Same colour structure as LO diagram

Weak Effective Theory
cα

s̄α

uβ

d̄β

I Same operator
O2 = (s̄αcα)V−A(ūβdβ)V−A

I Additional contribution to C2
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Next-to-Leading Order QCD Diagrams: Gluon Exchange I

Colour-Neutral Gluon
cα

s̄α

uβ

d̄β

W+

gγγ̄

Coloured Gluon
cα

s̄β

uα

d̄β

W+

gαβ̄
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Next-to-Leading Order QCD Diagrams: Gluon Exchange Ia

Full Standard Model Theory
cα

s̄α

uβ

d̄β

W+

gγγ̄

I Initial and final state
have independent colour indices

I Same colour structure as LO diagram

Weak Effective Theory
cα

s̄α

uβ

d̄β

gγγ̄

I Same operator
O2 = (s̄αcα)V−A(ūβdβ)V−A

I Additional contribution to C2
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Next-to-Leading Order QCD Diagrams: Gluon Exchange Ib

Full Standard Model Theory
cα

s̄β

uα

d̄β

W+

gαβ̄

I Initial and final state
mixed their colour indices

I Different colour structure as LO diagram

Weak Effective Theory
cα

s̄β

uα

d̄β

gαβ̄

I New operator
O1 ≡ (s̄βcα)V−A(ūαdβ)V−A

I New Wilson coefficient C1
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Next-to-Leading Order QCD Diagrams: Gluon Exchange II

c

s̄

u

d̄

W+

I Contributes to both O1 and O2

I Additional contributions to both C1 and C2
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An Effective Theory for the cs̄ → ud̄ Process

I The cs̄ → ud̄ process is described by effective Hamiltonian

Heff =
GF√

2
V ∗

csVud (C1O1 + C2O2) (13)

I Cj are the Wilson coefficients

I Oj are the current–current operators

O1 ≡ (s̄βcα)V−A(ūαdβ)V−A O2 ≡ (s̄αcα)V−A(ūβdβ)V−A (14)

I They differ in their colour structure

I In the absence of QCD: C1 = 0 and C2 = 1
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Weak Effective Theory or Operator Product Expansion

I For each weak decay process, you can write down an effective Hamiltonian

Heff =
GF√

2
V ∗

pqVab
∑

j

CjOj (15)

I Which set of operators to include depends on the process
→ Linked to the set of possible Feynman diagrams
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Hadronic Matric Element: From Operator to Observable

I Example: Branching fraction calculation:

B(B → f ) ↔ Γ(B → f ) ↔ |A(B → f )|2 ↔ |〈f |Heff|B〉|2 ↔ 〈f |Oj |B〉

I 〈f |Oj |B〉 is known as the Hadronic Matrix Element

I 〈f |Oj |B〉 contains the long-distance physics, including hadronisation process

I Non-perturbative nature require additional tricks and/or approximations:
Lattice QCD, LCSR, HQET, HQE, …

I Different energy scales allow different approximations
→ Techniques are often specific to one problem
→ What works for b-hadron decays need not apply to kaon physics
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Weak Effective Theory

I For each weak decay process, you can write down an effective Hamiltonian

Heff =
GF√

2
V ∗

pqVab
∑

j

CjOj (16)

I Which set of operators to include depends on the process
→ Linked to the set of possible Feynman diagrams

I OPE separates long-distance physics (Oj) from short-distance physics (Cj)

I Cj only depend on the hard-scattering process and are thus universal

I Hadronic matrix elements are decay specific

⇒ The OPE makes calculations of weak decays possible
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Weak Effective Theory or Operator Product Expansion

I Ideal tool to search for beyond the Standard Model physics

Heff =
GF√

2
V ∗

pqVab
∑

j

(
CSM

j + CNP
j

)
Oj (17)

I Can calculate CSM
j to any desired precision, control the hadronic matrix elements

⇒ CNP
j are the only unknowns

I Fitting this OPE model to experimental data allows to constrain CNP
j

+ Model-independent approach

+ Straightforward to combine multiple measurements (branching fraction & ratios, asymmetries, …)

− Does not reveal the underlying theory, only the allowed interactions

− In general: Too many degrees of freedom

→ Need to be selective about the operators we do and do not include

⇒ Difficult to interpret the significance
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Example: Fit of the b → s`` Anomalies�-dimensional �ts
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Source: LHCb Flavour Anomaly Workshop 2021
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Current–Current Operators arXiv:9512380[hep-ph]
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.

45

O1 = (s̄αuβ)V−A(ūβdα)V−A
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.

45

O2 = (s̄αuα)V−A(ūβdβ)V−A
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QCD Penguin Operators arXiv:9512380[hep-ph]
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.

45
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q
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q
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∑

q
(q̄αqα)V+A

O6 = (s̄αdβ)V−A
∑

q
(q̄βqα)V+A
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Electroweak Penguin Operators arXiv:9512380[hep-ph]
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.
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Semileptonic & Other Operators arXiv:9512380[hep-ph]

Semileptonic
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
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45

O7γ =
e

8π2 mb s̄ασµν(1 + γ5)bαFµν

O8G =
g

8π2 mb s̄ασµν(1 + γ5)T a
αβbβGa

µν
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BSM Operators

O9′ = (b̄αsα)V+A(¯̀̀ )V

O10′ = (b̄αsα)V+A(¯̀̀ )A

OS = (b̄α(1 + γ5)sα)(¯̀̀ )

OS′ = (b̄α(1 − γ5)sα)(¯̀̀ )

OP = (b̄α(1 + γ5)sα)(¯̀γ5`)

OP′ = (b̄α(1 − γ5)sα)(¯̀γ5`)

OT = (b̄ασ
µνsα)(¯̀σµν`)

OT5 = (b̄ασ
µν(1 − γ5)sα)(¯̀σµνγ5`)
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Simplest Case: Purely Leptonic Decays

I Let’s consider the decay B0
s → µ+µ−

Penguin Topologies

B0
s

s

b

u, c, t

u, c, t

W
γ, Z0

ℓ−

ℓ+

Box Topologies

B0
s

s

b

u, c, t ν

ℓ−

ℓ+

W

W

I In the Standard Model both diagrams correspond to operator O10 = (b̄αsα)V−A(¯̀̀ )A
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Decay Constant: Linking Operator to Observable

I Left part of diagram contains quarks but no leptons: annihilation of the Bs meson into the vacuum state

I Right part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state

⇒ Can factorise the calculation of hadronic matrix element into two parts

〈`+`−|O10|B0
s 〉 = 〈`+`−|(¯̀̀ )A|0〉 × 〈0|(b̄αsα)V−A|B0

s 〉 (18)

I For a pseudo-scalar P , second term is parametrised by the decay constant source

〈0|(q̄q′)V−A|P(p)〉 = −ifPpµ (19)

I The decay constant can be calculated on the lattice: See Flavour Lattice Averaging Group (FLAG)

I Footnote: Similar expressions exist for scalar or vector states
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Simplest Case: Purely Leptonic Decays

I Standard Model expression for the branching fraction arXiv:1303.3820

B(Bs → µ+µ−)
∣∣
SM =

τBs G2
Fm4

W sin4 θW

4π5 ×
(

GF√
2
|VtsV ∗

tb |
∣∣∣CSM

10

∣∣∣ fBs

)2

× mBs m
2
µ

√
1 −

4m2
µ

m2
Bs

(20)

I Can still recognise the OPE using Wilson coefficients and operators

I Footnote: Expression for CSM
10

CSM
10 =

ηY Y0(xt)

sin2 θW
(21)

I where Y0 is one of the Inami-Lim functions

Y0(xt) =
xt

8

[
4 − xt

1 − xt
+

3xt

(1 − xt)2 ln xt

]
, xt ≡

[
m̄t(m̄t)

mW

]2

(22)
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More Complex Case: Semi-Leptonic Decays

B
0
d D

(∗)−

b

d d

c

ℓ
+

νℓW
+

I Top part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state

I Bottom part of diagram is transition from one quark state to another quark state

⇒ Can factorise the calculation of hadronic matrix element into two parts

〈D−`+ν`|O|B0
d〉 = 〈`+ν`|(¯̀ν)|0〉 × 〈D−|(b̄αcα)|B0

d〉 (23)
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Form Factor: Linking Operator to Observable

I The hadron-to-hadron transition is described by a Form Factor
I For a Pseudo-scalar to Pseudo-scalar transition source

〈P ′(p′)|(q̄γµq|P(p)〉 =
[
(p + p′)µ − m2

P − m2
P′

q2 qµ

]
f +
P→P′(q2) +

[
m2

P − m2
P′

q2 qµ

]
f 0
P→P′(q2) (24)

I qµ ≡ pµ − p′
µ

I Form factors can be calculated on the lattice (high q2) or using LCSR (low q2)
I Need to extrapolate to other q2 regions (large uncertainty!)
I q2-dependence can be fitted to experimental data, for example dB/dq2 spectra
I Normalisation factor f +/0

P→P′(0) needs to come from theory calculations

I Footnote: Similar expressions exist for pseudo-scalar to vector transitions
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The Most Complex Case: Non-Leptonic Decays

The Ideal Case:

Bq

M2

M1

b

q q

q1

q3

q2W

Colour-Allowed
Tree Topology

I Imagine velocity of q2 and q3 much larger than velocity of q1

⇒ q2 and q3 will separate from q1 before hadronisation takes place
I Expect no long-distance interactions between M1 and M2

⇒ Can factorise the calculation of hadronic matrix element into decay constant and form factors

〈M1M2|O|Bq〉 = 〈M2|(q̄2q1)|0〉 × 〈M1|(b̄q1|Bq〉 = fM2 × f +/0
Bq→M1

(q2) (25)
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The Most Complex Case: Non-Leptonic Decays

Every Other Case:
1 Explicitly account for non-factorisable corrections

2 Avoid observables that require absolute normalisation (i.e. branching fractions)

Use Clever Tricks!
I Exploit ratios (CP asymmetries, branching ratios, …)

I Exploit flavour symmetries
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When Does Factorisation Work?

Expected to Work Well
I Colour-allowed tree diagrams with mM1 � mM2

I Examples: B0
d → D−π+, B0

d → D−K+, B0
s → D−

s π
+, B0

s → D−
s K+

May or may not Work
I Colour-allowed tree diagrams with mM1 ≈ mM2

I Required separation still takes place, but q1 is now too fast to hadronise with the spectator quark
I Additional gluon exchanges expected to dissipate energy
I Examples: B0

d → π−π+, B0
s → K−K+

Not Expected to Work
I Colour-allowed tree diagrams with mM1 � mM2

I Example: B0
s → K−D+

I Other decay topologies, like colour-suppressed tree diagrams, etc.
I Example: B0

s → K̄ 0D0, B0
d → K 0J/ψ

Kristof De Bruyn (VSI) Application of EFTs for B Physics 13-04-2023 32


