OSAF Topical Lectures on Effective Field Theories Application of EFTs for *B* Physics

Kristof De Bruyn

Groningen - April 13th, 2023

A Simple Weak Interaction

Energy Scales:

- Interaction involves 2 very distinct energy scales
- ▶ Mass of the *W* boson: 80.377 GeV
- Mass of the initial quarks
 - Charm: 1.27 GeV
 - Beauty: 4.18 GeV
- \Rightarrow Interaction is highly virtual

Let's have a closer look ...

Footnote on Notation

Explanations:

- $\alpha, \beta, \gamma, \delta$ are colour indices
- μ, ν are Lorentz indices
- $g^{\mu\nu}$ is the metric tensor
- ▶ *k* is the momentum transfer
- ► V-A represents the Vector-Axial-Vector Lorentz structure:

$$(\bar{q}p)_{V-A} \equiv \bar{q}\gamma_{\mu}(1-\gamma_5)p$$
 (3)

4

Interaction Hamiltonian

 $\blacktriangleright\,$ The Standard Model Hamiltonian for the $c\bar{s} \rightarrow u\bar{d}$ process

$$\mathcal{H} = \frac{g_{\sf EW}^2}{8} V_{cs}^* V_{ud}(\bar{s}_{\alpha} c_{\alpha})_{V-A} (\bar{u}_{\beta} d_{\beta})_{V-A} \frac{1}{k^2 - m_W^2} \left(g^{\mu\nu} - \frac{k^{\mu} k^{\nu}}{m_W^2} \right) \tag{4}$$

• Use that $k = \mathcal{O}(m_q) \ll m_W$

$$\frac{1}{k^2 - m_W^2} \left(g^{\mu\nu} - \frac{k^{\mu} k^{\nu}}{m_W^2} \right) \qquad \xrightarrow{k \ll m_W} \qquad \frac{g^{\mu\nu}}{m_W^2} + \mathcal{O}\left(\frac{k^2}{m_W^2}\right)$$

Introduce the Fermi constant

$$G_{\rm F} \equiv \frac{\sqrt{2}g_{\rm EW}^2}{8m_W^2} \tag{6}$$

End up with the leading order in a series expansion

$$\mathcal{H} = \frac{G_{\mathsf{F}}}{\sqrt{2}} V_{cs}^* V_{ud} (\bar{\mathbf{s}}_{\alpha} c_{\alpha})_{\mathsf{V}-\mathsf{A}} (\bar{u}_{\beta} d_{\beta})_{\mathsf{V}-\mathsf{A}} + \mathcal{O}\left(\frac{k^2}{m_W^2}\right) \tag{7}$$

(5)

Full Standard Model theory

$$\mathcal{H} = \frac{G_{\mathsf{F}}}{\sqrt{2}} V_{cs}^* V_{ud}(\bar{\mathbf{s}}_{\alpha} \mathbf{c}_{\alpha})_{\mathsf{V}-\mathsf{A}} (\bar{u}_{\beta} d_{\beta})_{\mathsf{V}-\mathsf{A}} + \mathcal{O}\left(\frac{k^2}{m_W^2}\right) \tag{8}$$

- ▶ Interpretation: Short-range exchange force approximately behaves point interaction
- ▶ Note: expression remains exact until you neglect $\mathcal{O}\left(\frac{k^2}{m_W^2}\right)!$

$$\mathcal{H} = \frac{G_{\mathsf{F}}}{\sqrt{2}} V_{cs}^* V_{ud} (\bar{s}_{\alpha} c_{\alpha})_{\mathsf{V}-\mathsf{A}} (\bar{u}_{\beta} d_{\beta})_{\mathsf{V}-\mathsf{A}}$$
(9)

This has become an effective local four-fermion interaction (cfr. Fermi's 1933 theory of β⁻ decay)

 \downarrow

Effective Hamiltonian

$$\mathcal{H} = \frac{G_{\mathsf{F}}}{\sqrt{2}} V_{cs}^* V_{ud} (\bar{s}_{\alpha} c_{\alpha})_{\mathsf{V}-\mathsf{A}} (\bar{u}_{\beta} d_{\beta})_{\mathsf{V}-\mathsf{A}}$$
(10)

$$\mathcal{O}_2 \equiv (\bar{s}_{\alpha} c_{\alpha})_{\mathsf{V}-\mathsf{A}} (\bar{u}_{\beta} d_{\beta})_{\mathsf{V}-\mathsf{A}}$$
 and $C_2 = 1$ (11)

- \triangleright \mathcal{O}_2 is referred to as an operator
- C₂ is referred to as a Wilson coefficient
- End up with the formalism known as Operator Product Expansion

$$\mathcal{H}_{\rm eff} = \frac{\mathsf{G}_{\mathsf{F}}}{\sqrt{2}} V_{cs}^* V_{ud} C_2 \mathcal{O}_2 \tag{12}$$

▶ We have completely removed the W-dependence from the theory ... or "integrated out" the W

Towards an Effective Field Theory

Next-to-Leading Order QCD Diagrams: Vertex Correction

Next-to-Leading Order QCD Diagrams: Gluon Exchange I

university of

Next-to-Leading Order QCD Diagrams: Gluon Exchange la

Next-to-Leading Order QCD Diagrams: Gluon Exchange Ib

Next-to-Leading Order QCD Diagrams: Gluon Exchange II

• Contributes to both \mathcal{O}_1 and \mathcal{O}_2

• Additional contributions to both C_1 and C_2

 \blacktriangleright The $c \bar{s}
ightarrow u \bar{d}$ process is described by effective Hamiltonian

$$\mathcal{H}_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} V_{cs}^* V_{ud} \left(C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 \right) \tag{13}$$

- \blacktriangleright C_j are the Wilson coefficients
- \mathcal{O}_j are the current–current operators

$$\mathcal{O}_1 \equiv (\bar{s}_\beta c_\alpha)_{\mathsf{V}-\mathsf{A}} (\bar{u}_\alpha d_\beta)_{\mathsf{V}-\mathsf{A}} \qquad \mathcal{O}_2 \equiv (\bar{s}_\alpha c_\alpha)_{\mathsf{V}-\mathsf{A}} (\bar{u}_\beta d_\beta)_{\mathsf{V}-\mathsf{A}}$$
(14)

- They differ in their colour structure
- In the absence of QCD: $C_1 = 0$ and $C_2 = 1$

► For each weak decay process, you can write down an effective Hamiltonian

$$\mathcal{H}_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} V_{\rho q}^* V_{ab} \sum_j C_j \mathcal{O}_j \tag{15}$$

- Which set of operators to include depends on the process
- \rightarrow Linked to the set of possible Feynman diagrams

Hadronic Matric Element: From Operator to Observable

• Example: Branching fraction calculation:

 $\mathcal{B}(B o f) \quad \leftrightarrow \quad \Gamma(B o f) \quad \leftrightarrow \quad |A(B o f)|^2 \quad \leftrightarrow \quad |\langle f|\mathcal{H}_{ ext{eff}}|B
angle|^2 \quad \leftrightarrow \quad \langle f|\mathcal{O}_j|B
angle$

- $\langle f | \mathcal{O}_j | B \rangle$ is known as the Hadronic Matrix Element
- $\langle f | \mathcal{O}_j | B \rangle$ contains the long-distance physics, including hadronisation process
- Non-perturbative nature require additional tricks and/or approximations: Lattice QCD, LCSR, HQET, HQE, ...
- Different energy scales allow different approximations
- \rightarrow Techniques are often specific to one problem
- \rightarrow What works for *b*-hadron decays need not apply to kaon physics

Weak Effective Theory

► For each weak decay process, you can write down an effective Hamiltonian

$$\mathcal{H}_{\rm eff} = \frac{G_{\rm F}}{\sqrt{2}} V_{\rho q}^* V_{ab} \sum_j C_j \mathcal{O}_j \tag{16}$$

- Which set of operators to include depends on the process
- \rightarrow Linked to the set of possible Feynman diagrams
- OPE separates long-distance physics (\mathcal{O}_j) from short-distance physics (C_j)
- ► C_j only depend on the hard-scattering process and are thus universal
- Hadronic matrix elements are decay specific
- $\Rightarrow\,$ The OPE makes calculations of weak decays possible

Weak Effective Theory or Operator Product Expansion

Ideal tool to search for beyond the Standard Model physics

$$\mathcal{H}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} V_{pq}^* V_{ab} \sum_{j} \left(C_j^{\text{SM}} + C_j^{\text{NP}} \right) \mathcal{O}_j \tag{17}$$

• Can calculate C_j^{SM} to any desired precision, control the hadronic matrix elements $\Rightarrow C_j^{\text{NP}}$ are the only unknowns

- Fitting this OPE model to experimental data allows to constrain C_i^{NP}
 - + Model-independent approach
 - + Straightforward to combine multiple measurements (branching fraction & ratios, asymmetries, ...)
 - Does not reveal the underlying theory, only the allowed interactions
 - In general: Too many degrees of freedom
 - $\rightarrow\,$ Need to be selective about the operators we do and do not include
 - \Rightarrow Difficult to interpret the significance

Example: Fit of the $b \rightarrow s\ell\ell$ Anomalies

Source: LHCb Flavour Anomaly Workshop 2021

Current–Current Operators

arXiv:9512380[hep-ph]

 $\mathcal{O}_1 = (ar{s}_lpha \, u_eta)_{\mathsf{V}-\mathsf{A}} (ar{u}_eta \, d_lpha)_{\mathsf{V}-\mathsf{A}}$

 $\mathcal{O}_2 = (ar{s}_lpha u_lpha)_{\mathsf{V}-\mathsf{A}} (ar{u}_eta d_eta)_{\mathsf{V}-\mathsf{A}}$

QCD Penguin Operators

$$egin{aligned} \mathcal{O}_3 &= (ar{s}_lpha d_lpha)_{\mathsf{V}-\mathsf{A}} \sum_q (ar{q}_lpha q_lpha)_{\mathsf{V}-\mathsf{A}} \ \mathcal{O}_4 &= (ar{s}_lpha d_eta)_{\mathsf{V}-\mathsf{A}} \sum_q (ar{q}_eta q_lpha)_{\mathsf{V}-\mathsf{A}} \ \mathcal{O}_5 &= (ar{s}_lpha d_lpha)_{\mathsf{V}-\mathsf{A}} \sum_q (ar{q}_lpha q_lpha)_{\mathsf{V}+\mathsf{A}} \ \mathcal{O}_6 &= (ar{s}_lpha d_eta)_{\mathsf{V}-\mathsf{A}} \sum_q (ar{q}_eta q_lpha)_{\mathsf{V}+\mathsf{A}} \end{aligned}$$

Electroweak Penguin Operators

$$\mathcal{O}_{7} = \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q}e_{q}(\bar{q}_{\alpha}q_{\alpha})_{\mathsf{V}+\mathsf{A}}$$
$$\mathcal{O}_{8} = \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q}e_{q}(\bar{q}_{\beta}q_{\alpha})_{\mathsf{V}+\mathsf{A}}$$
$$\mathcal{O}_{9} = \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{\mathsf{V}-\mathsf{A}}\sum_{q}e_{q}(\bar{q}_{\alpha}q_{\alpha})_{\mathsf{V}-\mathsf{A}}$$
$$\mathcal{O}_{10} = \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{\mathsf{V}-\mathsf{A}}\sum_{q}e_{q}(\bar{q}_{\beta}q_{\alpha})_{\mathsf{V}-\mathsf{A}}$$

Semileptonic & Other Operators

arXiv:9512380[hep-ph]

$$\begin{split} \mathcal{O}_{9'} &= (\bar{b}_{\alpha} s_{\alpha})_{\mathsf{V}+\mathsf{A}}(\bar{\ell}\ell)_{\mathsf{V}} \\ \mathcal{O}_{10'} &= (\bar{b}_{\alpha} s_{\alpha})_{\mathsf{V}+\mathsf{A}}(\bar{\ell}\ell)_{\mathsf{A}} \\ \mathcal{O}_{5} &= (\bar{b}_{\alpha}(1+\gamma_{5})s_{\alpha})(\bar{\ell}\ell) \\ \mathcal{O}_{5'} &= (\bar{b}_{\alpha}(1-\gamma_{5})s_{\alpha})(\bar{\ell}\ell) \\ \mathcal{O}_{P} &= (\bar{b}_{\alpha}(1+\gamma_{5})s_{\alpha})(\bar{\ell}\gamma_{5}\ell) \\ \mathcal{O}_{P'} &= (\bar{b}_{\alpha}\sigma^{\mu\nu}s_{\alpha})(\bar{\ell}\sigma_{\mu\nu}\ell) \\ \mathcal{O}_{T5} &= (\bar{b}_{\alpha}\sigma^{\mu\nu}(1-\gamma_{5})s_{\alpha})(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell) \end{split}$$

Simplest Case: Purely Leptonic Decays

• Let's consider the decay $B_s^0
ightarrow \mu^+ \mu^-$

► In the Standard Model both diagrams correspond to operator $\mathcal{O}_{10} = (\bar{b}_{\alpha} s_{\alpha})_{V-A} (\bar{\ell}\ell)_A$

- Left part of diagram contains quarks but no leptons: annihilation of the B_s meson into the vacuum state
- Right part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state

 \Rightarrow Can factorise the calculation of hadronic matrix element into two parts

$$\langle \ell^+ \ell^- | \mathcal{O}_{10} | B_s^0 \rangle = \langle \ell^+ \ell^- | (\bar{\ell}\ell)_{\mathsf{A}} | 0 \rangle \times \langle \mathbf{0} | (\bar{b}_{\alpha} s_{\alpha})_{\mathsf{V}-\mathsf{A}} | B_s^0 \rangle \tag{18}$$

► For a pseudo-scalar *P*, second term is parametrised by the decay constant

$$\langle 0|(\bar{q}q')_{V-A}|P(p)\rangle = -if_P p_\mu \tag{19}$$

- The decay constant can be calculated on the lattice: See Flavour Lattice Averaging Group (FLAG)
- Footnote: Similar expressions exist for scalar or vector states

SOURCE

Simplest Case: Purely Leptonic Decays

Standard Model expression for the branching fraction

arXiv:1303.3820

$$\mathcal{B}(B_s \to \mu^+ \mu^-)\big|_{\rm SM} = \frac{\tau_{B_s} G_{\rm F}^2 m_W^4 \sin^4 \theta_W}{4\pi^5} \times \left(\frac{G_{\rm F}}{\sqrt{2}} \left|V_{ts} V_{tb}^*\right| \left|C_{10}^{\rm SM}\right| f_{B_s}\right)^2 \times m_{B_s} m_{\mu}^2 \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}}$$
(20)

Can still recognise the OPE using Wilson coefficients and operators

Footnote: Expression for C_{10}^{SM}

$$C_{10}^{\rm SM} = \frac{\eta_Y Y_0(x_t)}{\sin^2 \theta_W} \tag{21}$$

▶ where Y₀ is one of the Inami-Lim functions

$$Y_0(x_t) = \frac{x_t}{8} \left[\frac{4 - x_t}{1 - x_t} + \frac{3x_t}{(1 - x_t)^2} \ln x_t \right] \qquad , \qquad x_t \equiv \left[\frac{\bar{m}_t(\bar{m}_t)}{m_W} \right]^2 \tag{22}$$

More Complex Case: Semi-Leptonic Decays

- Top part of diagram contains leptons but no quarks: creation of a lepton pair from the vacuum state
- Bottom part of diagram is transition from one quark state to another quark state
- $\Rightarrow\,$ Can factorise the calculation of hadronic matrix element into two parts

$$\langle D^{-}\ell^{+}\nu_{\ell}|\mathcal{O}|B_{d}^{0}\rangle = \langle \ell^{+}\nu_{\ell}|(\bar{\ell}\nu)|0\rangle \times \langle D^{-}|(\bar{b}_{\alpha}c_{\alpha})|B_{d}^{0}\rangle$$
(23)

Form Factor: Linking Operator to Observable

- The hadron-to-hadron transition is described by a Form Factor
- ► For a Pseudo-scalar to Pseudo-scalar transition

$$\langle P'(p')|(\bar{q}\gamma_{\mu}q|P(p))\rangle = \left[(p+p')_{\mu} - \frac{m_{P}^{2} - m_{P'}^{2}}{q^{2}}q_{\mu}\right]f_{P\to P'}^{+}(q^{2}) + \left[\frac{m_{P}^{2} - m_{P'}^{2}}{q^{2}}q_{\mu}\right]f_{P\to P'}^{0}(q^{2})$$
(24)

 $\blacktriangleright \ q_\mu \equiv p_\mu - p'_\mu$

- Form factors can be calculated on the lattice (high q^2) or using LCSR (low q^2)
- Need to extrapolate to other q^2 regions
- ▶ q^2 -dependence can be fitted to experimental data, for example dB/dq^2 spectra
- ▶ Normalisation factor $f_{P \rightarrow P'}^{+/0}(0)$ needs to come from theory calculations
- ▶ Footnote: Similar expressions exist for pseudo-scalar to vector transitions

(large uncertainty!)

source

The Most Complex Case: Non-Leptonic Decays

The Ideal Case:

- Imagine velocity of q_2 and q_3 much larger than velocity of q_1
- \Rightarrow q_2 and q_3 will separate from q_1 before hadronisation takes place
- Expect no long-distance interactions between M_1 and M_2
- \Rightarrow Can factorise the calculation of hadronic matrix element into decay constant and form factors

$$\langle \mathcal{M}_1 \mathcal{M}_2 | \mathcal{O} | \mathcal{B}_q \rangle = \langle \mathcal{M}_2 | (\bar{q}_2 q_1) | 0 \rangle \times \langle \mathcal{M}_1 | (\bar{b} q_1 | \mathcal{B}_q) = f_{\mathcal{M}_2} \times f_{\mathcal{B}_q \to \mathcal{M}_1}^{+/0} (q^2)$$
(25)

Every Other Case:

- Explicitly account for non-factorisable corrections
- 2 Avoid observables that require absolute normalisation (i.e. branching fractions)

Use Clever Tricks!

- Exploit ratios (CP asymmetries, branching ratios, ...)
- Exploit flavour symmetries

When Does Factorisation Work?

Expected to Work Well

- Colour-allowed tree diagrams with $m_{M_1} \gg m_{M_2}$
- ► Examples: $B_d^0 \to D^- \pi^+$, $B_d^0 \to D^- K^+$, $B_s^0 \to D_s^- \pi^+$, $B_s^0 \to D_s^- K^+$

May or may not Work

- ▶ Colour-allowed tree diagrams with $m_{M_1} \approx m_{M_2}$
- \blacktriangleright Required separation still takes place, but q_1 is now too fast to hadronise with the spectator quark
- Additional gluon exchanges expected to dissipate energy
- Examples: $B^0_d \to \pi^-\pi^+$, $B^0_s \to K^-K^+$

Not Expected to Work

- Colour-allowed tree diagrams with $m_{M_1} \ll m_{M_2}$
- Example: $B_s^0 \to K^- D^+$
- Other decay topologies, like colour-suppressed tree diagrams, etc.
- Example: $B_s^0 o \bar{K}^0 D^0$, $B_d^0 o K^0 J/\psi$