

ENERGY RESOLUTION OF TIMEPIX AND MEDIPIX3

G. Blaj, R. Ballabriga

Overview

- Ideal vs. real detectors THL scans
- Timepix results
- Medipix3 (SPM, CSM) results
- Conclusions

Overview

- Ideal vs. real detectors THL scans
- Timepix results
- Medipix3 (SPM, CSM) results
- Conclusions

- The ideal energy dispersive detector (for *e.g.*, EDXRF):
 - Stability (time, temperature, radiation damage, ...)
 - High Q.E. over a wide energy range
 - Zero read-out time, zero pile-up etc.
 - Infinite dynamic range
 - Unlimited energy resolution (common: ~160 eV)
 - No charge sharing / incomplete charge collection
 - No sensor fluorescence / escape peaks

- The ideal energy dispersive detector (for *e.g.*, EDXRF):
 - Stability (time, temperature, radiation damage, ...)
 - High Q.E. over a wide energy range
 - Zero read-out time, zero pile-up etc.
 - Infinite dynamic range
 - <u>Unlimited energy resolution</u> (common: ~160 eV)
 - No charge sharing / incomplete charge collection
 - No sensor fluorescence / escape peaks

Ideal detector

- Spectrum of monochromatic radiation (E₀) using an ideal detector (σ=0):
 - $\delta(E-E_0)$ function

Less ideal detectors: incomplete charge collection...

- Spectrum of monochromatic radiation (E₀) using an ideal detector (σ=0):
 - $I(E) = \delta(E-E_0)$
- Charge sharing (f):
 - $I(E) = f * H(E_0-E) + (1-f) * \delta(E-E_0)$

Less ideal detectors: energy resolution...

- Charge sharing (f):
 - $I(E) = f * H(E_0-E) + (1-f) * \delta(E-E_0)$
- Charge sharing **o** Detector resolution (σ):
 - $I(E) = [f * H(E_0-E) + (1-f) * \delta(E-E_0)] \circ Gauss((E-E0)/\sigma)$

Less ideal detectors: cumulative spectra (THL scans) ...

- Spectrum:
 - $I(E) = f * [1-erf((E-E0)/\sigma)]/2. + (1-f) * Gauss((E-E0)/\sigma)$
- Cumulative spectrum:

$$I(E) = \int_{E}^{+\infty} \left[\frac{f}{2} * \left(1 - erf(\frac{x - E_0}{\sigma}) \right) + (1 - f) * Gauss(\frac{x - E_0}{\sigma}) \right] * dx$$

- Medipix detectors: cumulative spectra (THL scans)

Real spectra

• Monochromatic radiation:

$$I(E) = \int_{E}^{+\infty} \left[\frac{f}{2} * \left(1 - erf(\frac{x - E_0}{\sigma}) \right) + (1 - f) * Gauss(\frac{x - E_0}{\sigma}) \right] * dx$$

• Multiple energies present:

$$- I(E) = \sum_{j=0}^{L_0} I_j(E_j)$$

• Slow but quite robust and accurate

Real Spectra: Cu x-ray tube, fluorescence targets

- X-ray tube: Cu anode, ~1.8 kW
 - 45 kV, 40 mA or 50 kV, 35 mA
 - (PANalytical X'pert Pro MRD)
- Fluorescence targets: Pd, Cd, In
- Medipix3 and Timepix detectors, USB interface
- Spectra:
 - Bremstrahlung (up to 50 keV)
 - (Compton scattering, diffraction, ...)
 - Characteristic anode and target fluorescence lines

Material	Ζ	Ka (keV)	Kb (keV)
Cu	29	8.040	8.904
Pd	46	21.121	23.815
Cd	48	23.106	26.091
In	49	24.136	27.271

Typical THL scan

- Typical THL scan
 - Single pixel scan (black) (Medipix3, Pd target)
 - Single pixel scan Fit (green)
 - Average scan Fit

Overview

- Ideal vs. real detectors THL scans
- Timepix results
- Medipix3 (SPM, CSM) results
- Conclusions

Timepix (Counting): Average scans

- Settings
 - Timepix (counting)
 - 45kV, 40mA
 - THL step 2
 - 4s / step
- Black: Average THL scans
- Red: Fit
- σ=10.43 +/- 0.71 THL steps
- However, individual pixel scans: offset!

Timepix (Counting): Average spectra

- Differential threshold scans (black) appear noisy
 - Shutter timing?
 - Instability?
- This noise is reduced by aligning individual pixel scans
 - By shifting pixels, the systematic deviations at each threshold are spread out
 - Peak widths are slightly smaller*

Timepix (Counting): Average aligned scans

- Fit average of aligned scans:
- Slightly better energy resolution: σ=9.59+/-0.28 THL steps
 - Compared to σ=10.43 +/- 0.71
 - Most likely, measurements with better statistics will improve this difference

Timepix (Counting): THL – energy correspondence

- Linear fit: peak thresholds = f (peak energies)
- ~26 e⁻ / THL step
- ~94 eV / THL step
- σ=9.59+/-0.28 THL steps

Timepix (Counting): THL Offset distribution

- Gradient across the matrix
- Top: read-out periphery
- σ = 2.85 THL steps

Timepix (Counting): THL Scale (Gain) distribution

- Gradient across the matrix
- Top: read-out perifery
- Diffraction spots!

Timepix (Counting): I scale distribution

- Gradient across the matrix
- Vertical lines
- Top: read-out perifery
- Diffraction spots!

Timepix (counting) THL Scans

Timepix (counting) Offsets, Scaling Factors

Overview

- Ideal vs. real detectors THL scans
- Timepix results
- Medipix3 (SPM, CSM) results
- Conclusions

Medipix3 SPM THL Scans

Medipix3 SPM Offsets, Scaling Factors

Medipix3 CSM (Sum of 4 neighboring pixels!)

Medipix3 CSM (Sum of 4 neighboring pixels!)

• Offsets, scaling: N/A

Overview

- Ideal vs. real detectors THL scans
- Timepix results
- Medipix3 (SPM, CSM) results
- Conclusions

Conclusions

- Threshold scans appear noisy
 - Shutter timing?
 - Instability?
- By aligning individual pixel scans:
 - Noise is spread out
 - Energy resolution is improved
 - Threshold equalization with noise edge: suboptimal
- Energy resolution:
 - 910 eV * / Timepix (+ Charge sharing)
 - 770 eV / Medipix3 SPM (+ Charge sharing)
 - 1680 eV / Medipix 3 CSM (sum of 4 *) (low Charge sharing)
 - 160 eV / typical EDXRF detectors
- Distribution of Offsets, Gain:
 - Gradient across matrix
 - Interesting systematic differences / every 4 pixels in Medipix3 SPM

• Questions?

Medipix3 SPM – Shaper 150

