CP properties in 2HDM

Test of CP properties

- Suppose the signal at 125 GeV, h(125), actually consists of two states, a CPeven one and a CP-odd one. Consider the benchmark scenario in the 2HDM proposed by the LHCHiggsXSWG (see next slide)
- Apply the usual methods for testing CP properties to this scenario, in particular angular distributions in h(125) → 4 leptons. Can one distinguish the above scenario from a pure CP-even state in this way?
- Which other observables could one use to experimentally detect the presence of two degenerate states at 125 GeV?

Test of CP properties, 2HDM benchmark scenario

BP1: *Howard Haber, Oscar Stål* Phenomenological benchmarks for the CP-conserving 2HDM with softlybroken Z_2-symmetry. https://twiki.cern.ch/twiki/pub/LHCPhysics/ LHCHXSWG3Benchmarks2HDM/HH_OS_2HDM_Benchmarks.pdf

Scenario C (\mathcal{CP} -overlap)

In this work we have restricted ourselves to benchmarks for a 2HDM Higgs sector with $C\mathcal{P}$ -conservation. Nevertheless, we consider one scenario where overlapping $C\mathcal{P}$ -odd and $C\mathcal{P}$ -even Higgs bosons simultaneously have mass close to 125 GeV [13]. Since the $C\mathcal{P}$ -odd Higgs boson does not couple to vector bosons at tree level, there are surprisingly few channels where it is possible to distinguish this scenario from the case with a single light Higgs, h. The most important channel where the $C\mathcal{P}$ -odd contribution to the total rate could reach $\mathcal{O}(1)$ is through gluon $(b\bar{b})$ fusion, followed by the decay $h/A \to \tau^+ \tau^-$. Input parameters are given in the physical basis. Note that the choice of $\lambda_5 = 0$ in this scenario is equivalent to $m_{12}^2 = \frac{1}{2}m_A^2 \sin 2\beta$.

Scenario C (\mathcal{CP} -overlap)								
	m_h	m_H	m_A	$m_{H^{\pm}}$	$c_{\beta-lpha}$	λ_5	aneta	Type
C1	125	300	125	300	0	0	$1 \dots 10$	Ι
C2	125	300	125	300	0	0	$1 \dots 10$	II

2HDM

- SM with extra Higgs Doublet, leading to 5 bosons (h,H,A,H[±])
- Free parameters: Masses, Ratio of vacuum expectation values (tan β), Mixing angle between h,H (α)
- Alignment limit: $cos(\beta \alpha) = 0$: h is SM-like
- Our case: h,A mass degenerate (125 GeV) and alignment limit
 - Type I: only one doublet couples to fermions (Fermiophobic)
 - Type II: one doublet couples to down quarks, charged leptons; other couples to up quarks (MSSM-like). Coupling ratio: tan β

Properties of a pseudoscalar Higgs

- Spin 0, pseudoscalar interaction with fermions
- Parity conservation: coupling to vector bosons allowed only at loop level via fermions
- In type I: All fermionic interactions suppressed by tan² β
- In type II: Up-quarks coupling suppressed by tan² β compared to down-quarks, leptons
- Two signatures:
 - Angular dependence in $h \rightarrow VV$
 - Branching fractions of $h \rightarrow bb$ or $h \rightarrow \tau \tau$

Angular dependence

 For h,A → VV → 4 ℓ, angular distributions of final state leptons dependent on CP-state

MadGraph

- Generate events for both CP even and CP odd Higgs
- In this case h,A \rightarrow WW \rightarrow 2 ℓ 2v

Angular distributions $h, A \rightarrow WW$

DPhill

htemp Entrie955044 Mean 3.135 RMS 2.123

htemp Entrie952046 Mean 3.138 RMS 2.414

Distributions h,A → WW

Decay modes of a pseudoscalar Higgs

- Loop contributions from
 A → VV possible at
 O(0.1%)
- At tree level h → bb and h → τ τ the most promising candidates

2HDMC

- Package for C++ to calculate branching fractions and decay widths for 2HDM
- See https://2hdmc.hepforge.org
- Used output to plot BR, decay width as function of tan $\boldsymbol{\beta}$

Decay widths of h,A

Branching Ratios of h, A

ggF+2jets

 When concerning two jets a clear separation in angular jet distributions between scenario's is possible

Conclusion

- Angular distributions between leptons do not show a clear separation between even and odd
- Deviation in bb or tau tau branching fraction measurements could be explained by pseudoscalar contribution
- Angular distributions between jets do show a separation between even and odd

"Type a quote here."

–Johnny Appleseed