Higgs boson analyses

Frank Filthaut Radboud Universiteit Nijmegen / Nikhef

Nikhef Topical Lectures, April 22, 2016

Standard Model Higgs boson analyses

- pre-LHC searches
- LHC discovery analyses
- determination of Higgs boson properties

BSM analyses

The Standard Model Higgs boson: pre-LHC searches

Forget about the following arguments!

- before the top quark discovery
- two-loop effective Higgs potential calculations not available

No constraints on m_H at this point

• but see later

A priori any (nonzero) mass is possible! Earliest investigations focused on (very) light Higgs boson. See e.g. early review by <u>Ellis et al., 1976</u>

no apparent change in measurements of G between cm and km length scales:
 m_H > 100 μeV

- no effect on neutron charge form factor and angular distributions in e⁻n scattering: m_H > 13 MeV
- no 0⁺ → 0⁺ transitions observed from excited (20 MeV) ⁴He: excludes 2 MeV < m_H < 18 MeV

Late 80's:

- no contributions to $B \rightarrow K\ell^+\ell^-$ (and $K \rightarrow \pi\ell^+\ell^-$): $m_H > 2 m_\tau$ (if $m_t > 40 \text{ GeV}!$)
 - similar claim of m_H > 350 MeV from K decays

A priori any (nonzero) mass is possible! Earliest investigations focused on (very) light Higgs boson. See e.g. early review by <u>Ellis et al., 1976</u>

- no apparent change in measurements of G between cm and km length scales:
 m_H > 100 μeV
- no effect on neutron charge form factor and angular distributions in e⁻n scattering: m_H > 13 MeV
- no 0⁺ → 0⁺ transitions observed from excited (20 MeV) ⁴He: excludes 2 MeV < m_H < 18 MeV

Late 80's:

- no contributions to $B \rightarrow K\ell^+\ell^-$ (and $K \rightarrow \pi\ell^+\ell^-$): $m_H > 2 m_\tau$ (if $m_t > 40$ GeV!)
 - similar claim of m_H > 350 MeV from K decays

$$\frac{\Gamma(B \to H^0 X)}{\Gamma(B \to e \nu X)} = \frac{|V_{tb} V_{ts}^*|^2}{|V_{cb}|^2} \frac{27\sqrt{2}}{64\pi^2} G_F m_b^2 \left[\frac{m_t}{m_b}\right]^4 \times \left[1 - \frac{M_H^2}{m_b^2}\right]^2 \frac{1}{r(m_c/m_b)},$$

Haber, Schwartz, Snyder, 1987; Chivukula, Manohar, 1988

A priori any (nonzero) mass is possible! Earliest investigations focused on (very) light Higgs boson. See e.g. early review by <u>Ellis et al., 1976</u>

- no apparent change in measurements of G between cm and km length scales:
 m_H > 100 μeV
- no effect on neutron charge form factor and angular distributions in e⁻n scattering: m_H > 13 MeV
- no 0⁺ → 0⁺ transitions observed from excited (20 MeV) ⁴He: excludes 2 MeV < m_H < 18 MeV

Late 80's:

- no contributions to $B \rightarrow K\ell^+\ell^-$ (and $K \rightarrow \pi\ell^+\ell^-$): $m_H > 2 m_\tau$ (if $m_t > 40$ GeV!)
 - similar claim of m_H > 350 MeV from K decays

LEP

Detection techniques

Always start from "stable" particles! ATLAS animation, but techniques are general for high-energy collider experiments

Beyond this:

- jets: collimated streams of hadrons, representative of high-energy q / g
 - LHC: anti-k_t algorithm (ATLAS: R=0.4)
- b-quark jets: identified from τ(b hadrons) ~ 1.5 ps; decays reconstructed using tracking information (ATLAS: for ε_b=70%: ε_c=20%, ε_l=0.2%)
- τ leptons: $\tau_{\tau} \sim 300$ fs; hadronic decays \rightarrow narrow jets
- neutrinos: seen as apparent lack of momentum balance

LEP

LEP I (1989—1994): Z-boson "factory"

• ~ 160 pb-1, collected mostly at $\sqrt{s} = mZ$

• $\sigma(e+e- \rightarrow Z) \sim 30$ nb: 5M Z decays / experiment

LEP 2 (1995-2000): higher ECM

- \sqrt{s} up to 209 GeV, ~ 0.6 fb-I
- W⁺W⁻, ZZ production but also searches for new heavy particles

Higgs boson production mainly through Higgs-strahlung process

- exploited both at LEP I (decays to off-shell Z) and LEP 2 (decays to on-shell Z)
- vector boson fusion always involves off-shell W/Z bosons

LEP

LEP I (1989—1994): Z-boson "factory"

- ~ 160 pb-1, collected mostly at $\sqrt{s} = mZ$
- $\sigma(e+e- \rightarrow Z) \sim 30$ nb: 5M Z decays / experiment

LEP 2 (1995-2000): higher ECM

- \sqrt{s} up to 209 GeV, ~ 0.6 fb-I
- W⁺W⁻, ZZ production but also searches for new heavy particles

Higgs boson production mainly through Higgs-strahlung process

- exploited both at LEP I (decays to off-shell Z) and LEP 2 (decays to on-shell Z)
- vector boson fusion always involves off-shell W/Z bosons

LEP I (I)

Searches covering the low / intermediate m_H range. Search topologies strongly dependent on m_H

- $m_H < 2 m_\mu$: decays to e^+e^- only
- search explicitly for a displaced e⁺e⁻ pair: limited to m_H > 20 MeV (tracker acceptance)
- search for a coplanar leptons ($\Delta \phi < \pi$) from $Z^* \rightarrow \ell^+ \ell^-$ in otherwise empty events (decays behind calorimeter)

LEP I (I)

Searches covering the low / intermediate $m_{\rm H}$ range. Search topologies strongly dependent on $m_{\rm H}$

- $m_H < 2 m_\mu$: decays to e^+e^- only
- search explicitly for a displaced e⁺e⁻ pair: limited to m_H > 20 MeV (tracker acceptance)
- search for acoplanar leptons ($\Delta \phi < \pi$) from $Z^* \rightarrow \ell^+ \ell^-$ in otherwise empty events (decays behind calorimeter)

Nearly background-free search results

LEP I (2)

Search strategy for $2m_{\mu} < m_{H} < 30$ GeV:

- $H \rightarrow \mu^+\mu^-$ (m_H < 2 GeV); also for $Z^* \rightarrow \overline{q}q$
- mono- or dijet topology: Higgs recoiling against acoplanar lepton pair or missing momentum
- $Z^* \rightarrow \ell^+ \ell^-$ and $Z^* \rightarrow \overline{\nu} \nu$, respectively
- inclusive selection intended to reduce sensitivity to QCD uncertainties
- some bg from radiative events (isolated γ, low m_H) and other SM processes (higher m_H)

 $m_H < 30$ GeV excluded by end 1990

LEP I (2)

Search strategy for $2m_{\mu} < m_{H} < 30$ GeV:

- $H \rightarrow \mu^+\mu^-$ (m_H < 2 GeV); also for $Z^* \rightarrow \overline{q}q$
- mono- or dijet topology: Higgs recoiling against acoplanar lepton pair or missing momentum
- $Z^* \rightarrow \ell^+ \ell^-$ and $Z^* \rightarrow \overline{\nu} \nu$, respectively
- inclusive selection intended to reduce sensitivity to QCD uncertainties
- some bg from radiative events (isolated γ, low m_H) and other SM processes (higher m_H)

 $m_H < 30$ GeV excluded by end 1990

LEP I (3)

Situation for $m_H > 30$ GeV more complicated due to falling cross section

- $H \rightarrow \overline{b}b$ dominant for $m_H > 15$ GeV
- again restrict to $Z \rightarrow e^+e^-, \mu^+\mu^-, \overline{\nu}\nu$
- for m_H = 65 GeV, expect 10 events combined for four experiments
- extensive cuts (and some use of multivariate analysis) to reject especially $e^+e^- \rightarrow \ell^+\ell^- \overline{q}q$
 - event shape variables, lepton isolation, signal versus background kinematics
- NB: even $m(\overline{\nu}\nu)$ can be estimated
- very effective: still managed to find efficient selection criteria but no selected events in data!

	$H\nu\overline{\nu}$		He ⁺ e ⁻		Hµ+µ~		other	total
	eff. (%)	Nexp	eff. (%)	Nexp	eff. (%)	Nexp	N _{exp}	N_{exp}
50	55	7.68	59	1 39	69	1.63	0.41	11.11
55	51	3.74	55	0 69	66	0.84	0.19	5.46
60	43	1.54	49	0.30	61	0.37	0.07	2.28
65	34	0.53	44	0.12	56	0.15	0.02	0.82

LEP I (3)

Situation for $m_H > 30$ GeV more complicated due to falling cross section

- $H \rightarrow \overline{b}b$ dominant for $m_H > 15$ GeV
- again restrict to $Z \rightarrow e^+e^-, \mu^+\mu^-, \overline{\nu}\nu$
 - for m_H = 65 GeV, expect 10 events combined for four experiments
- extensive cuts (and some use of multivariate analysis) to reject especially $e^+e^- \rightarrow \ell^+\ell^- \overline{q}q$
 - event shape variables, lepton isolation, signal versus background kinematics
- NB: even $m(\overline{\nu}\nu)$ can be estimated
- very effective: still managed to find efficient selection criteria but no selected events in data!

Combination of four experiments' data: $m_H > 65.6 \text{ GeV}$

LEP 2 (I)

Exploit $Z^* \rightarrow ZH$ decay

• account for interference with VBF in Hee and $H\overline{\nu}\nu$ final states (appreciable effect only at the Higgs-strahlung kinematic limit)

LEP 2 (2)

Exploit dominant $H \rightarrow \overline{b}b$ decay using b-tagging

wider use of silicon tracking detectors; pixel detectors

Searches no longer background-free

- more sophisticated statistical tools required to combine results from channels / experiments / CM energies:
- likelihood ratio $\lambda \equiv \frac{L(\{n\}|s+b)}{L(\{n\},b)} = \prod_{i} \frac{P(n_i|s_i+b_i)}{P(n_i|b_i)}$
- CL_s: modify standard exclusion limit accounting for possibility that no signal sensitivity is expected

LEP 2 (3)

Final LEP results obtained by combining results from four experiments

LEP ended (in 2000) with a slight excess at highest candidate mass

result: mass range m_H < 114.4 GeV excluded

Indirect (electroweak) information

Many precision tests of EW structure carried out (LEP, SLD, Tevatron)

• good internal consistency fitting to pseudo-observables $(m_Z, m_H, \Delta \alpha^{(5,had)}(m_Z^2), \alpha_s(m_Z^2), m_t, m_b, m_c)$

Tevatron (I)

$p\overline{p}$ collisions, $\sqrt{s} = 1.96 \text{ TeV}$

- upgraded after 1995 (Run I)
- top quark discovery
- Run 2: 2001— 2010
 - 10 fb⁻¹ delivered
 - instantaneous luminosity limited by antiproton production (one p for every 10⁵ proton-target collisions)

Tevatron (2)

- large-x regime ($\hat{s} = x_1 x_2 s$)
- q
 q
 initial states (VH associated production)
 benefit greatly from valence quarks
 extracted from both p, p

Tevatron (2)

Tevatron (3)

Higgs production cross section is tiny compared to total inelastic scattering cross section

- focus on channels with sufficiently distinctive signatures (leptons, missing transverse momentum)
 - m_H < 135 GeV: associated production with leptonic W/Z decays
 - $m_H > 135 \text{ GeV: } H \rightarrow W^+W^$ with leptonic W decays

Tevatron (4)

Results:

- excluded ranges at both low m_H (associated production) and high m_H (WW)
- slight excesses observed in intermediate m_H range (associated production)
- excess of 2.8 standard deviations at $m_H = 125 \text{ GeV}$

Tevatron (4)

Results:

- excluded ranges at both low m_H (associated production) and high m_H (WW)
- slight excesses observed in intermediate m_H range (associated production)
- excess of 2.8 standard deviations at $m_H = 125 \text{ GeV}$

LHC discovery analyses

Higgs boson production & decay

Comparison to Tevatron

Essentially all analyses benefit from higher CM energy. But note:

- this plot compares I4 TeV (not 8 TeV) to 2 TeV
- also cross sections for background processes increase

A narrow resonance

"Low" m_H searches benefit from a precise mass reconstruction

Hadron collider kinematics (1)

Hard interactions collisions are between <u>partons</u>, not protons. Consequences:

- partonic system typically boosted along beam axis
 - Iong detectors!
 - useful to describe system in terms of quantities transforming "conveniently" under boosts along z: p_T , ϕ , y (or η , for massless particles)
 - (pseudo)rapidity <u>differences</u> invariant under boosts

$$y \equiv \frac{1}{2} \ln \left(\frac{E - p_z}{E + p_z} \right)$$
 $\eta \equiv -\ln \tan(\theta/2)$

- partons not participating in the hard interaction typically escape along the beam pipe (but some colour flow remains me "underlying event")
- overall p_z of the hard interaction is a priori unknown in only v <u>transverse</u> momenta can be estimated (in absence of final-state specific constraints)

Hadron collider kinematics (2)

Example: transverse mass m_T for W-boson production: $m_T < m_W$

- in absence of Γ_W effects and experimental resolution

 $m_{\rm T}^2(\ell,\nu) \equiv (|\vec{p}_{{\rm T},\ell}| + |\vec{p}_{{\rm T},\nu}|)^2 - (\vec{p}_{{\rm T},\ell} + \vec{p}_{{\rm T},\nu})^2$

Discovery channels

H → YY (I)

A "simple" search, provided photons can be identified and reconstructed

properly. Two main challenges:

- m(YY) reconstruction: needs photon vertex
 - difficult especially in presence of pile-up (multiple interactions per bunch crossing) and for "soft" events
 - MVA vertex selection; multiple event categories with different efficiencies
 - use converted γ (good direction from tracks, but worse m(γγ) resolution)
- background from jets fragmenting to single π^0
 - stringent cuts on calorimeter shower shapes
 - split event categories with different mass resolutions

H → γγ (I)

A "simple" search, provided photons can be identified and reconstructed properly. Two main challenges:

- m(\u03c8\u03c8\u03c8) reconstruction: needs photon vertex
 - difficult especially in presence of pile-up (multiple interactions per bunch crossing) and for "soft" events
 - MVA vertex selection; multiple event categories with different efficiencies
 - use converted γ (good direction from tracks, but worse m(γγ) resolution)
- background from jets fragmenting to single π⁰
 - stringent cuts on calorimeter shower shapes
 - split event categories with different mass resolutions

H → YY (2)

Are these photons??

need a <u>statistical</u> background subtraction

Note: observation in this channel precludes spin-1 hypothesis

Landau-Yang theorem

$H \rightarrow ZZ \rightarrow 4$ leptons

"Easy": select four isolated electrons / muons

- drawback: low $Z \rightarrow \ell^+ \ell^-$ branching fractions (3.4%)
- also: one off-shell Z boson \implies one pair of very soft leptons ($p_T(\ell) > 6 \text{ GeV}$)
 - <u>control</u> regions to constrain background normalisations (here: Tt, Z+jets bg from sample with isolation requirements removed from sub-leading lepton pair and at least one lepton failing impact parameter requirement)

$H \rightarrow ZZ \rightarrow 4$ leptons

"Easy": select four isolated electrons / muons

- drawback: low $Z \rightarrow \ell^+ \ell^-$ branching fractions (3.4%)
- also: one off-shell Z boson \implies one pair of very soft leptons ($p_T(\ell) > 6 \text{ GeV}$)
 - <u>control</u> regions to constrain background normalisations (here: Tt, Z+jets bg from sample with isolation requirements removed from sub-leading lepton pair and at least one lepton failing impact parameter requirement)

$\mathsf{H} \to \mathsf{W}^+\mathsf{W}^- \to \ell^+ \vee \ell'^- \nabla (\mathsf{I})$

With two escaping V, mass reconstruction not possible

- but some sensitivity retained: $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 |\mathbf{p}_T^{\ell\ell} + \mathbf{p}_T^{miss}|^2}, \quad E_T^{\ell\ell} = \sqrt{|\mathbf{p}_T^{\ell\ell}|^2 + m_{\ell\ell}^2}$
- did not use ee and $\mu\mu$ channels (background from Z + fake missing p_T)

$H \rightarrow W^+W^- \rightarrow \ell^+ \vee \ell'^- \nabla (2)$

Exploit the Higgs boson's spin-0 nature

• exploit by removing events (especially irreducible bg) with large $\Delta \phi(\ell \ell)$ or large m($\ell \ell$)

$H \rightarrow W^+W^- \rightarrow \ell^+ \vee \ell'^- \overline{\vee} (3)$

No scattering without radiation...

- in principle, aim is to be inclusive; but overwhelming t background makes this impossible (even after vetoing events with b-tagged jets)
 <u>bin</u> in jet multiplicity
 - NB: b-tagged samples provide excellent control regions
- problem: theoretical uncertainties are typically given for inclusive N_{jet} observables
 - account for migration between N_{jet} bins by <u>anti-correlating</u> uncertainties: Stewart-Tackmann approach (leads to larger uncertainties)

Statistical analysis

Basic approach: use (binned or unbinned) likelihood ratio

$$\lambda(\mu) = L\left(\mu, \hat{\vec{\theta}}(\mu)\right) / L\left(\hat{\mu}, \hat{\vec{\theta}}\right)$$

- μ: assumed signal strength
- θ: nuisance parameters parametrising effect of systematic uncertainties on predictions
- per channel or combined

Determination of Higgs boson properties

Spin/parity determination (1)

Relax and test assumptions about Higgs spin and parity properties. Sensitivity especially in decay angular distributions

• spin 0:
$$A(X \to VV) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$
 0⁺, 0⁻

• spin 2:

$$A(X \to VV) = \Lambda^{-1} \begin{bmatrix} 2g_{1}^{(2)}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2g_{2}^{(2)}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} \\ + g_{3}^{(2)}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + g_{4}^{(2)}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ + m_{V}^{2} \left(2g_{5}^{(2)}t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu} + 2g_{6}^{(2)}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}) + g_{7}^{(2)}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*}\epsilon_{2}^{*} \right) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} + \frac{g_{10}^{(2)}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{q}^{*}\tilde{q}^{\alpha}) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{q}^{\alpha}) \\ + g_{8}^{(2)}\frac{\tilde{q}_{\mu}\tilde{q}}{\Lambda^{2}}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{q}^{\alpha}) \\$$

- only polarisation states ±1 (qq), ±2 (gg) possible predictions depend on fraction of events produced from each initial state
- (spin I also considered)

Not an exhaustive list of options!

• CP admixtures in principle possible (property of the coupling, not the particle)

Spin/parity determination (2)

Maximum information can be obtained from $H \rightarrow WW$, ZZ analyses (leptons carry information about W, Z spins)

 $H \rightarrow ZZ$: 5 angles in addition to m₁₂, m₃₄

- build BDTs using all information, trained to distinguish each spin/parity hypothesis from the 0⁺ one
- alternative: likelihood ratio computed from matrix element calculations

Spin/parity determination (3)

$H \rightarrow WW$: relax m($\ell \ell$) and $\Delta \phi(\ell \ell)$ cuts. Subsequently, use two BDTs:

- J^P=0⁺ signal trained against bg
- J^P=0⁺ signal trained against alternative J^P hypothesis

2D BDT output mapped onto ID, with bins ordered in increasing number of <u>expected signal</u> events for the assumed hypothesis

 relies sensitively on good modelling of BDT discriminant distributions; verified in validation regions

Spin/parity determination (4)

Some information can be obtained from $H \rightarrow \gamma \gamma$: scattering angle in Collins-Soper frame

$$|\cos\theta^*| = \frac{\sinh\Delta\eta_{\gamma\gamma}}{\sqrt{1 + (p_{\mathsf{T},\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_{\mathsf{T},\gamma_1}p_{\mathsf{T},\gamma_2}}{m_{\gamma\gamma}^2}$$

- background subtraction depends slightly on nuisance parameters
 - different for different J^P hypotheses

Spin/parity determination (5)

Statistical procedure again using likelihood ratio $q = L\left(\hat{\mu}(J^P), \hat{\vec{\theta}}(J^P)\right) / L\left(\hat{\mu}(0^+), \hat{\vec{\theta}}(0^+)\right)$

All alternative hypotheses rejected at 95% CL

but CP admixtures are still possible! Analyses are ongoing

Basic information on couplings comes from considering <u>all</u> possible combinations of production and decay modes. Modes considered after the discovery:

- VBF production: two (q/q) jets with large $\Delta \eta$
 - H is a colour singlet is no colour flow in central region
 - example: $H \rightarrow WW$: events with two (non-b-tagged) jets

Basic information on couplings comes from considering <u>all</u> possible combinations of production and decay modes. Modes considered after the discovery:

- VBF production: two (q/\overline{q}) jets with large $\Delta \eta$
 - H is a colour singlet is no colour flow in central region
 - example: $H \rightarrow WW$: events with two (non-b-tagged) jets
 - veto on (significant) activity in central region

- basic t event selection + more H decay specific criteria
- bb, γγ, "multilepton" (ττ, WW)
- bb: busy final state with 6/4 jets (and 4 b jets) is nontrivial reconstruction (not done explicitly for Run-1 analyses)
- MVA carried out in different N_{jet}/N_b bins
- irreducible backgrounds: $\overline{tt}+\overline{b}b$, $\overline{tt}+Z(\rightarrow \overline{b}b)$

- basic t event selection + more H decay specific criteria
- bb, γγ, "multilepton" (ττ, WW)
- bb: busy final state with 6/4 jets (and 4 b jets) is nontrivial reconstruction (not done explicitly for Run-1 analyses)
 - MVA carried out in different N_{jet}/N_b bins
 - irreducible backgrounds: $\overline{tt} + \overline{bb}$, $\overline{tt} + Z(\rightarrow \overline{bb})$

- basic t event selection + more H decay specific criteria
- bb, γγ, "multilepton" (ττ, WW)
- bb: busy final state with 6/4 jets (and 4 b jets) is nontrivial reconstruction (not done explicitly for Run-1 analyses)
 - MVA carried out in different N_{jet}/N_b bins
 - irreducible backgrounds: $\overline{tt}+\overline{b}b$, $\overline{tt}+Z(\rightarrow \overline{b}b)$

- basic t event selection + more H decay specific criteria
- bb, γγ, "multilepton" (ττ, WW)
- bb: busy final state with 6/4 jets (and 4 b jets) is nontrivial reconstruction (not done explicitly for Run-1 analyses)
 - MVA carried out in different N_{jet}/N_b bins
 - irreducible backgrounds: $\overline{t}t+\overline{b}b$, $\overline{t}t+Z(\rightarrow \overline{b}b)$
- γγ:"simple" (statistics limited)

- basic t event selection + more H decay specific criteria
- $\overline{b}b, \gamma\gamma$, "multilepton" (TT, WW)
- bb: busy final state with 6/4 jets (and 4 b jets) is nontrivial reconstruction (not done explicitly for Run-1 analyses)
 - MVA carried out in different N_{jet}/N_b bins
 - irreducible backgrounds: $\overline{tt}+\overline{b}b$, $\overline{tt}+Z(\rightarrow \overline{b}b)$
- γγ:"simple" (statistics limited)

Decays to fermions: not covered at discovery time. Important to determine Yukawa couplings $\sum_{\alpha}^{0.22} \sum_{\mu_{T_{had}} + e_{T_{had}} \vee BF} \sum_{ATLAS}^{0.22} \sum_{\mu_{T_{had}} + e_{T_{had}} \vee BF} \sum_{\mu_{T_{had}} + e_{T_{had}} \vee BF$

- no evidence (from LHC) for $H \rightarrow \overline{b}b$ yet
 - <u>not discussed</u>:W/Z+ H production
- $H \rightarrow \tau^+ \tau^-$: complicated due to multiple decay modes ($\tau_{lep} \tau_{lep}, \tau_{lep} \tau_{had}, \tau_{had} \tau_{had}$) and missing V
 - improve mass resolution by (underconstrained) kinematic fit
 - "embedding": simulated τ overlaid on real $Z \rightarrow \mu^+ \mu^-$ candidate events (after removal of muon signals)
 - different production modes have different sensitivity
 - highest for VBF
 - multivariate analyses

Decays to fermions: not covered at discovery time. Important to determine Yukawa couplings $\Im_{300} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \Im_{100} = \frac{1}{ee + e\mu + \mu\mu} \bigvee_{BF} \int_{ATLAS} \iint_{ATLAS} \iint_{100} \oplus_{100} \oplus_{$

- no evidence (from LHC) for $H \rightarrow \overline{b}b$ yet
 - <u>not discussed</u>:W/Z+ H production
- $H \rightarrow \tau^+ \tau^-$: complicated due to multiple decay modes ($\tau_{lep} \tau_{lep}$, $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$) and missing V
 - improve mass resolution by (underconstrained) kinematic fit
 - "embedding": simulated τ overlaid on real $Z \rightarrow \mu^+\mu^-$ candidate events (after removal of muon signals)
 - different production modes have different sensitivity
 - highest for VBF
 - multivariate analyses

Decays to fermions: not covered at discovery time. Important to determine Yukawa couplings $= \frac{1}{ee + e\mu + \mu\mu VBF} + Data$

- no evidence (from LHC) for $H \rightarrow \overline{b}b$ yet
 - <u>not discussed</u>:W/Z+ H production
- $H \rightarrow \tau^+ \tau^-$: complicated due to multiple decay modes ($\tau_{lep} \tau_{lep}$, $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$) and missing V
 - improve mass resolution by (underconstrained) kinematic fit
 - "embedding": simulated τ overlaid on real $Z \rightarrow \mu^+\mu^-$ candidate events (after removal of muon signals)
 - different production modes have different sensitivity
 - highest for VBF
 - multivariate analyses

Decays to fermions: not covered at discovery time. Important to determine Yukawa couplings $= \frac{1}{ee + e\mu + \mu\mu} VBF$

- no evidence (from LHC) for $H \rightarrow \overline{b}b$ yet
 - <u>not discussed</u>:W/Z+ H production
- $H \rightarrow \tau^+\tau^-$: complicated due to multiple decay modes ($\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$) and missing V
 - improve mass resolution by (underconstrained) kinematic fit
 - "embedding": simulated τ overlaid on real $Z \rightarrow \mu^+\mu^-$ candidate events (after removal of muon signals)
 - different production modes have different sensitivity
 - highest for VBF
 - multivariate analyses

Similarly, look for evidence of Higgs coupling to 2^{nd} generation fermions: $H \rightarrow \mu^+ \mu^-$

- excellent mass resolution and efficiency... but very low rate
- most sensitive search (reduced $Z \rightarrow \mu^+\mu^-$ bg) again in VBF production mode
- statistics limited; discovery for SM strength will need full Run-2 dataset

BSM Higgs searches

Neutral MSSM Higgs boson searches

The MSSM knows 5 Higgs bosons: h, H, A, H[±]

- assume that the I25 GeV boson is h \blacksquare strong constraints on (m_A, tan β)
- will not discuss here any (re-)interpretation of existing measurements in terms
 of MSSM parameters but focus only on <u>additional</u> searches

Neutral Higgs bosons:

- high tan β : H/A $\rightarrow \tau^+\tau^-$ (bb more difficult..)
- heavy H/A masses become degenerate
- VBF production suppressed \blacksquare gluon fusion or $\overline{b}b$ H/A

Charged Higgs boson coupling to fermions (e.g. tb):

 H^{\pm} tb coupling $\sim V_{tb} (m_t \cot \beta (1 - \gamma_5) + m_b \tan \beta (1 + \gamma_5))$

 $m_{H\pm} < m_t + m_b$: production in top quark decays, decay to cs (low tan β) or TV (high tan β)

- decay to cs "straightforward" but relies on precise m_{jj} reconstruction in t → bjj decays
- decay to $T_{had}V$: test for deviations from lepton universality + use

Charged Higgs boson coupling to fermions (e.g. tb):

 H^{\pm} tb coupling $\sim V_{tb} (m_t \cot \beta (1 - \gamma_5) + m_b \tan \beta (1 + \gamma_5))$

 $m_{H\pm} < m_t + m_b$: production in top quark decays, decay to cs (low tan β) or TV (high tan β)

- decay to cs "straightforward" but relies on precise m_{jj} reconstruction in t → bjj decays
- decay to $T_{had}V$: test for deviations from lepton universality + use

Charged Higgs boson coupling to fermions (e.g. tb):

 H^{\pm} tb coupling $\sim V_{tb} (m_t \cot \beta (1 - \gamma_5) + m_b \tan \beta (1 + \gamma_5))$

 $m_{H\pm} < m_t + m_b$: production in top quark decays, decay to cs (low tan β) or TV (high tan β)

- decay to cs "straightforward" but relies on precise m_{jj} reconstruction in t → bjj decays
- decay to $T_{had}V$: test for deviations from lepton universality + use

Heavy H[±]: decay to tb, but also main production with t

- final state as for SM ttH(→bb), but with different kinematics
- borrows most analysis ingredients from SM search
- search becomes "easier" as m_{H±} increases..
 but this requires specific techniques optimised for dealing with boosted top quarks: "jet trimming"

Heavy H[±]: decay to tb, but also main production with t

- final state as for SM ttH(→bb), but with different kinematics
- borrows most analysis ingredients from SM search
- search becomes "easier" as m_{H±} increases..
 but this requires specific techniques optimised for dealing with boosted top quarks: "jet trimming"

Heavy H[±]: decay to tb, but also main production with t

- final state as for SM ttH(→bb), but with different kinematics
- borrows most analysis ingredients from SM search
- search becomes "easier" as m_{H±} increases..
 but this requires specific techniques optimised for dealing with boosted top quarks: "jet trimming"

• jet substructure: a very active area

Heavy H[±]: decay to tb, but also main production with t

- final state as for SM ttH(→bb), but with different kinematics
- borrows most analysis ingredients from SM search
- search becomes "easier" as m_{H±} increases..
 but this requires specific techniques optimised for dealing with boosted top quarks: "jet trimming"
- jet substructure: a very active area

The SM Higgs boson as a tool

Many models exist in which (very) heavy particles decay to high p_T "SM" Higgs bosons. Example: Randall-Sundrum graviton

- needs boosted H → b reconstruction w use jet substructure techniques as in high-p_T top tagging
 - improved in case of identified semileptonic decays: $P(b \rightarrow \mu v X)$
- sensitivity helped enormously by b-tagging both b jets from H decay
 - use small-radius (R=0.2), b-tagged track jets associated with calorimeter jets

The SM Higgs boson as a tool

Many models exist in which (very) heavy particles decay to high p_T "SM" Higgs bosons. Example: Randall-Sundrum graviton

- needs boosted H → b reconstruction w use jet substructure techniques as in high-p_T top tagging
 - improved in case of identified semileptonic decays: $P(b \rightarrow \mu v X)$
- sensitivity helped enormously by b-tagging both b jets from H decay
 - use small-radius (R=0.2), b-tagged track jets associated with calorimeter jets

Finally

Many topics (especially BSM Higgs physics) not discussed; e.g.

- decays of heavy Higgs bosons to WW or ZZ
- NMSSM (additional, possibly very light) Higgs bosons
- lepton flavour violating Higgs boson decays
- $A \rightarrow Zh$ searches
- measurement of differential distributions
- searches for SM HH production

LHC luminosity will increase further

- challenges for precision Higgs physics (especially couplings measurements)
- techniques optimised for the heaviest new (Higgs) particles

Future lepton collider will offer a much cleaner environment