Nik|hetf
Radboud University - Nikhet

High Energy Physics department - ATLAS team

ChatGPT
as a Coding Assistant

dr. ir. Uraz Odyurt, dr. Geoffrey Gilles Eﬁ-
2023.06-15 F AATLAAS

Stating the obvious ...

. What is ChatGPT?

e \What is ChatGPT?

@ O pen AI @ ChatGPT is a large language model developed by OpenAl, based on the GPT-3.5

architecture. It is designed to generate human-like responses to natural language input,

allowing users to have conversations with the model as if it were a human. ChatGPT has

 Language model => Any use-case relevant to languages ...
=> Writing
=> Summarising
=> [ranslation
=> Comparison
=>
=> Code generation
and tasks related to coding

. Can you teach me how to cook beef bourguignon?

. Can you tell me the arguments in favour of god's existence?

- Can you compare the economy of Japan with South Korea?

A language model you say

 We cannot have all possible sentences, but the building blocks ...

e “Sentence” as a unit is not granular enough.
=> |Let’'s consider words as atomic units ...

P(BNA) = P(A)- P(B|.)

* The joint probability of B and A occurring means the probability of A
occurring, multiplied by the probability of B occurring given that
A has occurred (context)

Extensive knowledge of
orogramming languages

* Abllity to understand and interpret natural language queries
related to programming
=> Syntax
=> Semantics

* Benefitting from the OpenAl “Cedex” (deprecated -> GPT-3.5)
=> Demo: Creating a sSpace Game with OpenAl Codex
=> Separate OpenAl language model, designed for code generation
=> |nterfaced to a large curated code database
=> Millions of code snippets
=> Organised by language, libraries and frameworks
=> Accompanied by metadata on function, inputs and outputs

—xample => "GitHub Copilot uses the OpenAl Codex to suggest code and entire functions in real-time.” |

https://youtu.be/Zm9B-DvwOgw

AS a coding assistant

: Code review
Error resolution - . .
& optimisation

* |dentifying and resolving Code analysis and
coding errors feedback
e Guidance - How to fix * Optimise code for

performance

Algorithm design :

* Right algorithms * Detalled documentation
* Best libraries anad * \Verbose explanations

frameworks * Simple diagrams

* But inability to solve too * Limited by practical
complex or overarching experience and context
Issues awareness of the user

 Unable to write extensive * Analytical explanations are
code, but rather provide generic and follow known
relevant code snippets knowledge/best practices

Can we trust the output?

Johnny English
at your service!

Describe 0077

Can we trust the output?

e Short answer: No!

e Validation is the key
=> You need partial/total expertise in the relevant field

* Proper answer: It depends ...
=> For languages with an extensive training corpus: Yes!
(also programming languages)
=> For common tasks: Yes!
(to save time)

Towards a Benchmark for Scientific Understanding in Humans and Machines

https://arxiv.org/abs/2304.10327

import torch import csv

import numpy as n
create a 1D tensor P py p

x = torch.tensor([1, 2, 3, 4, 5, 6])
print(x)
Output: tensor([1, 2, 3, 4, 5, 61)

Generate dummy data
names = ['Alice’', 'Bob', 'Charlie', 'David', "Emily']
ages = np.random.randint(low=20, high=50, size=len(names))

) . cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Miami']
reshape the tensor into a 2D tensor with 2 rows and 3 columns

x.view(2, 3)
printCy)
Output: tensor([[1, 2, 3],
#include <iostream> # [4, 5, 611D

Write data to CSV file

with open('dummy_data.csv', mode='w', newline='") as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age', 'City'])
for 1 in range(len(names)):

class Car # h the t int Dt ith 2 ch 1ls, 1 d 1
{ reshape the tensor into a 3D tensor wi channels, row, and 3 columns writer.writerow([names[i], ages[i], cities[i]])

public: = x.view(Z, 1, 3)
// Constructor print(z)
Car(std::string # Output: tensor([[[1, 2, 311,
L[4, 5, 611D

process = MG.MadGraph5Interface(proc_card="'p p > h > gamma gamma',)

Set the process energy and number of events to generate
process.run_cfg['run_mode'] = @ # "Run" mode for event generation

// Member functio
void startQ {

std::cout << "Starting the process.run_cfg['nb_event'] = 1000 # Number of events to generate

process.run_cfg['energy'] = 13000 # Center-of-mass energy in GeV

<< make_ <<
def quicksort(arr):

if lenCarr) <= 1:
return arr

}
void stop(Q) {

std::cout << "Stopping the " << make_ << " " import requests
import json

Generate events and save them to a file
else: process.run_cmd()
pivot = arr[lenCarr)//2]

left = [x for x in arr if x < pivot]

private: # Set the API key and search query parameters

right = [x for x in arr if x > pivot] // Data members api_key = "YOUR_API_KEY'
ght = or X in arr i > p1vo query = 'TITLE-ABS-KEY("data mining") AND PUBYEAR AFT 2018'

middle = [x for x in arr if x == pivot]

std::string make_;

std::string model_;
int year_; # Define the API endpoint and request parameters

}; url = "https://api.elsevier.com/content/search/scopus’

return quicksort(left) + middle + quicksort(right)

arr = [5, 2, 9, 3, 7, 4, 8, 1, 6]
sorted_arr = quicksort(arr)

params = {'apiKey': api_key, 'query': query, 'field': 'dc:identifie
class Lorry : public Car {

Send the request to the Scopus Search API and get the response
response = requests.get(url, params=params)

Parse the response and extract the publications' metadata
if response.status_code == 200:
data = json.loads(response.text)
for item in data['search-results']["entry']:
identifier = item['dc:identifier']
title = item['dc:title"]
journal = item['prism:publicationName']
date = item['prism:coverDate']

