

ULTRA-HIGH-ENERGY COSMIC RAYS

THE GROUP

SCIENTIFIC STAFF:

- •Radboud University/Nikhef: Falcke, Galea, Hörandel, De Jong, Mulrey, Schoorlemmer, Timmermans
- •University of Amsterdam: Vink

POST-DOCS:

- •Teresa Bister
- •Bjarni Pont
- •Washington Rodrigues de Carvalho

GRADUATE STUDENTS

- Mart Pothast (2023)
- Tomas Fodran (2023)
- Abha Kakurdikar (2024)
- Mohit Saharan (2025)
- Mohamed Emam (2025)
- Anthony Bwembya (2025)

PARTICLE INTERACTIONS AT THE HIGHEST ENERGY EVER SEEN

Cosmic Rays - Charles Timmermans

ORIGIN OF HIGHEST-ENERGY PARTICLES IN THE UNIVERSE

PARTICLE TYPE IS THE KEY !

STATE-OF-THE-ART: FD ENERGY, DIRECTION & PARTICLE TYPE

X_{MAX} USING FLUORESCENCE LIGHT $\Sigma(X_{MAX}) = 20 \text{ G/CM}^2$

ONLY IN DARK NIGHTS 10% DUTY CYCLE

11

PARTICLES

+++

COSMIC RAY

50X60 KM = DUTCH PROVINCE

AUGER COMBINED FITS

parameter	γ^{truth}	$\log_{10}(R_{\rm cut}^{\rm truth}/{\rm V})$	$I_{ m H}^{ m truth}$	$I_{ m Ie}^{ m t}$ ath	$I_{ m N}^{ m th}$ th	$I_{ m Si}^{ m truth}$	$I_{ m Fe}^{ m truth}$	f_0^{tru}
sim. truth	-3.22	18.09	8%	15%	77%	5.4%	2.6%	0.1
		SINU						

AUGER COMBINED FITS

AUGERPRIME

basically all **RD** items are already in Malargüe:

- solar panels 2000 units
- antenna arms 6800 parts
- ropes (6 km) and tensioners for the mast
- Al tubes for frame 13600 parts
- Al plates and antenna foot 8500 parts
- small parts, u-bolts, nuts, screws, ... ~400000 pieces
- housings for digitizers 2000
- pigtail cables for the LNA 4000
- housings for LNAs and bottom loads 12000 parts
- glass fiber antenna masts 1700
- ferrites **8500**
- mounting brackets for solar panels 3400 pieces
- L-ground bracket inside the dome 1700 pieces
- bottom load PCBs 2000 pieces
- signal cables inside mast 3400 cables
- fixtures to assemble ferrites 24 units
- -> 6 sea containers, 75 m³ each

1700 stations

RD status

AUGERPRIME Status of the deployment of UUBs and small PMTs

SDEU Deployment Status 10 March 2023

Cosmic Rays - Charles Timmermans

1073 (64,6%)

AUGERPRIME DATA

Example of rich information in data of Phase II

Cosmic Rays - Charles Timmermans

Great physics potential in muons

(Auger, Universe 2022)

RD: INTERFEROMETRY

Concept

 \vec{a}_i

sill,

Measure signal $s_i(t)$ at location a_i

 \sim

Calculate light travel time from antenna \vec{a}_i to a location in space \vec{x}

$$\Delta_i(\vec{x}) = \frac{|\vec{x} - \vec{a}_i| n_{eff}}{c}$$

Sum the waveforms from all antennas together with delays $\Delta_i(\vec{x})$ at \vec{x} :

$$S(\vec{x},t) = \sum_{i}^{N} s_i(t + \Delta_i(\vec{x}))$$

Nikhef

RD: INTERFEROMETRY

MAP THE POWER OF THE SUMMED WAVEFORM IN 4D

SHOWER PLANE

Cosmic Rays - Charles Timmermans

.

SHOWER TRACK

Multi-messenger astroparticle physics beyond 2030 protons, nuclei, gamma rays, neutrinos, (gravitational waves)

World-wide initiative to build next-generation CR observatory

At present working to define precise science case and detector layout, aiming at least for two sites (northern and southern hemisphere), covering at least 50 000 km²

GCOS homepage: http://particle.astro.ru.nl/gcos

upcoming workshop, Brussel, June 2023: https://indico.iihe.ac.be/event/1729/

GCOS The Global Cosmic Ray Observatory

- **Discussing different detection** concepts, like segmented water Cherenkov detectors combined with radio antennas, complemented by fluorescence
- detectors

Much more about the Auger Radio detector by Mohit

Cosmic Rays - Charles Timmermans

