Nik hef

The Eyes of LISA

SRON

Netherlands Institute for Space Research

Timesh Mistry (on behalf of the Nikhef LISA team)

CONSORTIUM

THE SPECTRUM OF GRAVITATIONAL WAVES

A Brief History of LISA

- 1993 M3 proposal for 4 spacecraft ESA/NASA collaborative mission
- 1995 LISA selected as ESA Cornerstone
- 1997 3 spacecraft ESA/NASA LISA proposal
- 2005 to 2011 Mission directive changes to ESA –led mission called eLISA (evolving LISA)
- 2013 LISA becomes a flagship mission for ESA.
- 2015 Launch of LISA pathfinder.
- 2016 LISA pathfinder reaches orbit and mission Nikhef + SRON join the party!
- 2017 LISA pathfinder mission end. LISA proposal

Voyage 2050

Final recommendations from the Voyage 2050 Senior Committee

Voyage 2050 Senior Committee: Linda J. Tacconi (*chair*), Christopher S. Arridge (*co-chair*), Alessandra Buonanno, Mike Cruise, Olivier Grasset, Amina Helmi, Luciano Iess, Eiichiro Komatsu, Jérémy Leconte, Jorrit Leenaarts, Jesús Martín-Pintado, Rumi Nakamura, Darach Watson.

Nikhef Jamboree 2023 - LISA QPR

May 2021

→ LISA PATHFINDER EXCEEDS EXPECTATIONS

LISA Pathfinder 2015-2016

• Technology demonstration for test mass and reference interferometery.

Nikhef and SRON Contribution to LISA

- First time developing long arm (science) interferometer.
- Three inteferometers on each optical bench
 - Science
 - Test mass
 - Reference
- Quadrant Photo-Receiver (QPR) will measure the phase of the beatnote frequency.

Nikhef and SRON Contribution to LISA

- Heterodyne signals from science interferometer.
 - 1-30 MHz beatnote frequency
 - Beatnote frequency changes due to satellite breathing
 - QPR will measure the phase change of the beatnote
 - GW signals in mHz frequency range
- 120 flight ready QPR systems!

What is the Quadrant Photo-Receiver (QPR)?/

Quadrant Photo-Diode

Housing

The Eyes of LISA - Why use QPDs?

- Science signal Common Phase
 - Sets the specification of the QPD
 - Phase sensitivity of 6 μ rad/ $\sqrt{(Hz)}$
 - Phase temperature stability of 5 mrad/K
 - Hence low noise
 - Low capacitance.
 - Custom diode with a thickness uncommon in commercial photodiodes.

• Alignment – Differential Phase

Noise Measurements

• Equivalent input current noise.

shot l_{EN} 2

the light is off

Noise Measurements

Phase Stability over Temperature

Phase Stability over Temperature

Housing Design Challenges

- Alignment of QPD into housing
- Electromagnetic compatibility
 - Large isolation required from the power radiated by communication antenna of spacecraft.
- Thermal and vibrational stability

EMC Tests

- Testing at ESTEC showed housing has lots of leaks.
- Time at ESTEC is expensive.
 - Build our own set-ups

EMC Tests

- To find the source(s) of the leak, incrementally build the full housing, testing at each stage.
- Use many different kinds of space qualified seals.
- Need 60 dB of isolation

Housing with the lid only

Housing with the lid QPD holder.

EMC Tests

Trace Color	Configuration
Yellow	Refenence housing open
Purple	Housing closed Co-seal
Blue	Housing closed QPD hole open & Co seal
Red	Housing closed QPD with bal canted spring & Co-Seal
a1	

Results Housing Shielding Ball Spring

Thermal Vacuum and Vibration Tests

Top: CAD render of thermal vacuum set-up.

Left: Prototype QPR used for testing.

• We need to perform thermal under vacuum.

• The QPD thermomechanical stability shall be $<0.10 \ \mu m/K$

• For the vibration tests the resonance frequencies need to be known and are simulated. Exact vibration load from ESA not known yet.

- The QPD positional hysteresis under standardized vibration loads shall be ${<}0.25~\mu m$

Testing performed at SRON

Displacement vs Temperature Results.

- Results show good agreement in X but not in Y.
- Strange behavior between the reference system and the prototype. Nikhef

Conclusion and Outlook

- Sucessfully demonstrated that current Nikhef QPD design meets LISA specification.
 - Room for further imporvements to reduce noise.
 - Could allow for the use of larger QPDs (better for alignment).
 - New 'flight ready' QPDs ready for manufacturing.
- Undergoing Technology Readiness Assessment with ESA.
- Continue to improve housing to meet EMC requirements.
- Developing test procedures for LISA optical bench intergration.

Frequency [Hz]

Literature

- LISA Pathfinder final results publication.
 - M. Armano et al. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 µHz, Physical Review Letters (2018).
 DOI: 10.1103/PhysRevLett.120.061101