

Searching for the *e*EDM with molecules

Alexander Boeschoten on behalf of the NL-*e*EDM collaboration Nikhef Jamboree 15/05/23

v university of groningen

Elementary EDM

• Hamiltonian:

• *eEDM*: Parity and Time Reversal (= *CP*) violating interaction between electron and electromagnetic field

 $H_{e\rm EDM} = -d_e \,\, \boldsymbol{\sigma} \cdot \mathbf{E}$

• EFT operator:
$$\mathcal{L}_{eEDM} = -i \frac{d_e}{2} \overline{\Psi}_e \sigma^{\mu\nu} \gamma^5 \Psi_e F_{\mu\nu}$$

 $H_{e\rm EDM} = -d_e \,\boldsymbol{\sigma} \cdot \boldsymbol{E}$

Elementary EDM

• *eEDM*: Parity and Time Reversal (= *CP*) violating interaction between electron and electromagnetic field

• EFT operator:
$$\mathcal{L}_{eEDM} = -i \frac{d_e}{2} \overline{\Psi}_e \sigma^{\mu\nu} \gamma^5 \Psi_e F_{\mu\nu}$$

• Hamiltonian: $H_{eEDM} = -d_e \sigma \cdot E$
 P
 $P = -d_e \sigma \cdot (-E) = -H_{eEDM}$

Elementary EDM

• *eEDM*: Parity and Time Reversal (= *CP*) violating interaction between electron and electromagnetic field

• EFT operator:
$$\mathcal{L}_{e \in DM} = -i \frac{d_e}{2} \overline{\Psi}_e \sigma^{\mu\nu} \gamma^5 \Psi_e F_{\mu\nu}$$

• Hamiltonian: $H_{e \in DM} = -d_e \sigma \cdot \mathbf{E}$
 T
 $-d_e (-\sigma) \cdot \mathbf{E} = -H_{e \in DM}$
 P
 $-d_e \sigma \cdot (-\mathbf{E}) = -H_{e \in DM}$

Molecular EDM

• d_e induces a **molecular EDM** $D^{P,T}$:

$$H_{\rm EDM} = -D^{P,T}(d_e)\mathbf{F}\cdot\mathbf{E}$$

• $D^{P,T}(d_e) \sim 10^5 d_e$ in BaF: *e*EDM is enhanced!

 $M_F = 1 \qquad M_F = -1$

E

Molecular EDM

d_e induces a molecular EDM *D^{P,T}* : *H_{EDM} = -D^{P,T}(d_e) F · E D^{P,T}(d_e) ~ 10⁵d_e* in BaF: *e*EDM is enhanced!
Zeeman effect:

$$H_{\text{Zeeman}} = -\mu \mathbf{F} \cdot \mathbf{B}$$

• Same shift, but larger!

$$\frac{\Delta W_{\rm EDM}}{\Delta W_{\rm Zeeman}} \sim 10^{-7}$$

EDM measurement

3

EDM measurement

1. Measure energy difference $\hbar\omega$ with high **precision**

 $\omega = 2\mu B + 2D^{P,T}E$

2. Do a *P* or *T* transformation with high accuracy $\omega - \tilde{\omega} = 4D^{P,T}E$

The NL-*e*EDM setup

+ many lasers!

Principle of the experiment

Quantum interference measurement

1. Superposition creation

HEP: Neutrino oscillations: same physics!

1. Neutrinos created in flavor eigenstate: superposition of energy eigenstates

 $|\nu_{\alpha}(0)\rangle=c_{1}|\nu_{1}\rangle+c_{2}|\nu_{2}\rangle$

2. Neutrinos travel through space, acquire phase because of mass difference

$$|\nu_{\alpha}(L)\rangle = e^{-i\left(\frac{m_1^2}{2E}\right)L}|\nu_1\rangle + e^{-i\left(\frac{m_2^2}{2E}\right)L}|\nu_2\rangle$$

3. Neutrinos probed with flavor physics: collapse to flavor-eigenstate

 $P_{\alpha} = |\langle v_{\alpha} | v_{\alpha}(L) \rangle|^{2} \propto \sin^{2} \phi$ $P_{\beta} = |\langle v_{\beta} | v_{\alpha}(L) \rangle|^{2} \propto \cos^{2} \phi$

Our robust implementation

Optical implementation of superposition creation and read out

NL-*e*EDM experiment

- Experimental control over parameters
 - $\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B}$

- Description of signal as function of parameters¹
 - $P_{F=0,1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$

 \rightarrow Permits to make use of parameter space

1) A.Boeschoten, PhD thesis 2023

New EDM-measurement method

NL-*e*EDM collaboration, *Novel spin-precession method for EDM searches* https://doi.org/10.48550/arXiv.2303.06402

Measuring an EDM

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
 - spin-precession spectrum
 - contains a lot of information
 - simultaneous measurement of parameters

Measuring an EDM

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
 - spin-precession spectrum
 - contains a lot of information
 - simultaneous measurement of parameters

• $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
- $\phi = 2(\mu B + D^{P,T}E)T$

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
- $\phi = 2(\mu B + D^{P,T}E)T$

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
- $\phi = 2(\mu B + D^{P,T}E)T$

 ϕ and *E*: different signature!

- $P_{F=1}(\delta, \Delta, t, T, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, \mathbf{E}, \mathbf{B})$
- $\phi = 2(\mu B + D^{P,T}E)T$

Systematic errors can be detected from EDM itself!

Experiment: excellent quantitative agreement

(b) 65.864 [WHz] μ2/S_{HH}C 65.863

Experiment: excellent quantitative agreement

Conclusion

- Measurement of EDM requires precise measurement of Zeeman shift in combination with accurate *E* field reversal
- NL-*e*EDM experiment has control over parameters and description of signal in terms of these parameters
- New method allows to measure accuracy (systematic biases) simultaneously with EDM
- In the NL-*e*EDM experiment we can limit systematic errors without losing statistics on the EDM: increased accuracy and precision

Backup slides

Fast beam

Supersonic beam (600 m/s) Spin-precession measurement

Slow beam

Cryogenic beam (200 m/s) Stark decelerator (30 m/s) Transverse laser cooling Intense and cold beam

Measuring the EDM

- $P_{F=1}(\phi)$
 - Traditional approach
 - Measure at one point in parameter space
 - Auxiliary measurements needed for other parameters

- $P_{F=1}(\delta)$
 - Spin-precession spectrum
 - Contains more information: simultaneous measurement of other parameters

Description: Optical Bloch equations

•
$$i\hbar \frac{\partial}{\partial t}\rho = [H(t), \rho] + L_{relax}(\rho)$$

Extra slide with perturbation theory?

Superposition creation

- Laser detunings: $\Delta \sim \text{GHz}$, $\delta = 0$: Two-photon resonance
- Laser intensities: $I_P = I_S = 40 I_{sat}$

\rightarrow Rabi oscillations

Superposition creation

- Laser detunings: $\Delta \sim \text{GHz}$, $\delta = 0$: Two-photon resonance
- Laser intensities: $I_P = I_S = 40 I_{sat}$

- At $t = 50 \ \mu s$: transfer from F = 0 to F = 1
- No population in other states

Superposition creation

- Laser detunings: $\Delta \sim \text{GHz}$, $\delta = 0$: Two-photon resonance
- Laser intensities: $I_P = I_S = 40 I_{sat}$

- At $t = 50 \ \mu s$: transfer from F = 0 to F = 1
- No population in other states

$$\begin{array}{ll} & - & \rho_{-1,1} = c_{-1}c_1^* \approx 0.5\\ & \text{coherence between states } |1,-1\rangle \text{ and } |1,1\rangle:\\ & \rightarrow & |\psi\rangle \approx \frac{1}{\sqrt{2}}(|1,-1\rangle + |1,+1\rangle) \end{array}$$

Spin precession

 $P_{F=0,1}(t+T+t) = P_{F=0,1}(\delta, \Delta, \Omega_{P/S}, \hat{e}_{P/S}, \Phi_{P/S}, E, B, t, T).$