

DARK MATTER PATRICK DECOWSKI

DM Group Members

• UvA Faculty Members:

- A.P. Colijn
- M.P. Decowski [PL]
- T.R. Pollmann
- **Postdocs**:
 - M. Pierre (Jan '23)
 - J. Mead (Feb '23)

• PhDs:

- J.Angevaare (All but defense)
- P. Gaemers
- M. Flierman
- C. Fuselli (Nov '22)
- M. van Nuland-Troost* (Aug '22)
- K.Weerman

• MSc:

- Jelmer de Haan
- Floris Jan Kamphorst
- Saad el Morabit

- Danny Haringa
- And 5 BSc students
- Former DM PhD Jelle Aalbers will start as new faculty in Groningen in fall and will rejoin the DM group

Goodbyes:

- Stefan Brünner (PD)
- Emily Brookes (PhD)

*) Together with the Neutrino Program

• HBO (technical) students:

Our Activities

Main activity: liquid xenon based rare event experiments

VULCAN R&D

3m

KamLAND-Zen

PTOLEMY R&D

Zurich

Tsinghua

Tokyo

NAGOYA UNIVERSITY Nagoya

Kobe

אופידע די אופידע די אופידע די אופידע די אופידע אופידע

Weizmann

NYUAD

https://xenonexperiment.org

@XENONExperiment

@xenonexperiment

@xenon_experiment

27 institutions and 167 collaboration members

XENON1T → XENONnT Improvements

- Reused much of the XENONIT infrastructure
- Larger TPC, more xenon: $2 t \rightarrow 5.9 t LXe$
- Improved cleanliness and radiopurity XENON, arXiv:2112.05629
- Liquid xenon purification system
- Radon distillation system
- Water Cherenkov neutron-veto
- New calibration systems and techniques
- Triggerless DAQ

Plante et al, arXiv:2205.07336

Murra et al, arXiv:2205.11492

XENON, arXiv:2212.11032

Detection Principle

ER / NR recoil discrimination:

Detection Principle

ER / NR recoil discrimination:

Unexpected Excess of ER events in XENON1T

Interactions with atomic electrons in LXe

XENON, PRD 102, 072004 (2020); arXiv:2006.09721 (~550 citations)

Unexpected Excess of ER events in XENON1T

Interactions with atomic electrons in LXe

>3σ results. Unexpected Tritium BG? More Statistics? Signal?

XENON, PRD 102, 072004 (2020); arXiv:2006.09721 (~550 citations)

XENONnT: Science Run 0 Dataset

- SR0 Search Data
- July 6 to Nov 10, 2021 (97.1 days)
- 95.1 days lifetime corrected
- (4.18 ± 0.13) tonne Fiducial Volume
- Exposure: I.I tonne-year
- Blind analysis

Detector Running

Detector running quite well, had to adopt a lot of reconstruction for lower E-field

Calibration of ER / NR Response

120

- Gives approximately flat energy spectrum
- Used to validate cut acceptance
- Detector performance at low energy with ³⁷Ar
 - Mono-energetic line at 2.8 keV
 - High statistics
 - Removed via distillation column ($T_{1/2} = 35 d$)
- Calibration of NR response with AmBe
- ER model based on combined fit
- Uncertainties propagated via Principal Component Analysis

Calibration of ER / NR Response

120

- Gives approximately flat energy spectrum
- Used to validate cut acceptance
- Detector performance at low energy with ³⁷Ar
 - Mono-energetic line at 2.8 keV
 - High statistics
 - Removed via distillation column ($T_{1/2} = 35 d$)
- Calibration of NR response with AmBe
- ER model based on combined fit
- Uncertainties propagated via Principal Component Analysis

Calibration of ER / NR Response

- Calibration of ER response using ²²⁰Rn
 - Gives approximately flat energy spectrum
 - Used to validate cut acceptance
- Detector performance at low energy with ³⁷Ar
 - Mono-energetic line at 2.8 keV
 - High statistics
 - Removed via distillation column ($T_{1/2} = 35 d$)
- Calibration of NR response with AmBe
- ER model based on combined fit
- Uncertainties propagated via Principal Component Analysis

WIMP Results

	Expectation	
ER	134	
Neutrons	$1.1^{+0.6}_{-0.5}$	
CEvNS	0.23 ± 0.06	
AC	4.3 ± 0.2	
Wall	14 ± 3	
Total	154	
WIMP		
Observed		

• Joran Angevaare [PhD]

WIMP Results

	Expectation	Best Fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.81 ± 0.07
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.2	0.42 ± 0.10
CEvNS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.0^{-2}
AC	4.3 ± 0.2	4.32 ± 0.15	0.363 ± 0.0^{-1}
Wall	14 ± 3	12^{+0}_{-4}	$0.34^{+0.01}_{-0.11}$
Total	154	152 ± 12	$1.95^{+0.12}_{-0.16}$
WIMP		2.4 *)	1.2 *)
Observed		152	3

152 events in ROI, 16 in blinded region Best fit indicates no significant excess

WIMP Results

- XY asymmetry in unblinded data
- Not observed in corrections, quality selection or calibration data

WIMP Spin-Independent Results

WIMP Spin-Independent Results

*) arXiv:1105.3166, arXiv:2105.00599 with 50% [median] rejection power

WIMP Spin-Independent Results

*) arXiv:1105.3166, arXiv:2105.00599 with 50% [median] rejection power

First 100 days of XENONnT already supersedes XENON1T at final exposure

DM \rightarrow Rare Event Searches & Measurements XLZD = 4 + 4

- Joined forces with competing LZ experiment
 - XLZD Consortium
- Ultra-sensitive liquid xenon rare event observatory
- On roadmaps in NL, Germany, Switzerland, US SNOWMASS / P5 process
- 60t LXe mass
- Preparing a Design Book

White Paper: J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001, arXiv:2203.02309

Ultra-low BG + new techniques allow to search for non-WIMP DM

Low-E complementarity

with DUNE

Dark Matter

- Dark photons
- Axion-like particles
- Planck mass

Sun

- pp neutrinos
- Solar metallicity
- ⁷Be, ⁸B, hep

Supernova

- Early alert
- Supernova neutrinos
- Multi-messenger astrophysics

Detailed measurements if/when galactic SN occurs

Large liquid xenon mass and ultra-low backgrounds expand number of available physics channels

Tina Pollmann (Science & Sensitivity WG Leader)

1White Paper: J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001, arXiv:2203.02309

XAMS: Xenon r&d in AMSterdam

Auke-Pieter Colijn

Maricke Flierman

Danny Haringa (THUAS)

Jelmer de Haan (UvA)

Xenon gas recirculation system

Slow Control

Voorheen: Robbert van Duijn (THU

Joost van Dijk (UvA) Cas Bader (voorheen LIS, nu Nikhef)

Major update ongoing of different subsystems:

Xenon gas recirculation system (new pump, new gas flow meter)

Completely new TPC design + new PMT!

Data acquisition

Slow Control (NI compact DAQ modules)

New Modular TPC

New TPC will allow for better adaptability to new sensors, single phase operation and liquid level control

VULCAN: Vacuum UV Light Characterization at Nikhef

Vikas Gupta

Thomas v.d. Lee (UvA)

Marjolein v. Nuland-Troost

For measuring

- Reflection
- Transmission
- Fluorescence

of materials used in detectors like

- PTFE
- Aluminium
- Wavelength shifting foils

R&D for XENON, DARWIN/XLZD and DUNE

Sample holder

Reflected beam

Tina Pollmann

Yannick Wishaupt (UvA)

VULCAN Fun Facts

- Lamp wavelengths from 115 nm up to 400 nm
- Sensor sensitivity from 120 nm up to 900 nm
- Pressure of 10-5 mbar
- Possibilities for future cooling

- XENONnT producing first science output
 - XENONIT low energy electronic recoil excess not observed
 - First 100 days of science running already better WIMP sensitivity than final XENONIT result
 - SRI ongoing, expect more XENONnT results soon!
- LZ, XENON and DARWIN joining forces will allow to build the ultimate LXe detector combining the technical expertise of the different experiments
- R&D setups in Amsterdam being built or renewed
- Not discussed: work on neutrinoless double beta decay and other (doubly) weak processes
- We thank the Nikhef ET, MT and CT/PDP for all their help in making our scientific work possible!

Summary

