ALICE Detector R&D @Nikhef

Jory Sonneveld for the Nikhef ALICE group

jory.sonneveld@nikhef.nl

ALICE inner tracking system 2 (ITS2): First monolithic active pixel sensors at LHC

12.5 GPix 10 m² active area: largest pixel detector ever built!

taking data since September 2021

a residual de la d

Three inner tracker layers to be upgraded 2026-2028

Future upgrade of the ALICE inner tracking system

 $0.36\% X_0$ per layer

Inner three layers with 432 modules to be replaced in 2026-2028 Very low material budget! 0.05% X_o per layer

22 mm from IP

18 mm from IP New beam pipe: 16 mm radius, 500 μm Be, 0.14% X₀ ITS3

Stitched,

wafer-scale bent

300 mm wafers

sensors from

Can we bend these silicon chips?

Can we bend these silicon chips?

Can we bend these silicon chips?

2028: ALICE ITS3 for Run 4

Each half layer is only one pixel sensor!

Stitching and bending

- Material: $X/X_0 \approx 0.05\%$
- 6 half-layer sensors with 3-5 wafer-scale monolithic active pixel sensors (MAPS)
- Half layer sensor of size of 280 x 53.3 mm² in layer 0
- Thinned to 40-50 μm
- Mechanically held in place by carbon foam
- Air cooling to reduce material (now: water cooling)

ITS3 Mechanics and Cooling at Nikhef/Utrecht

Wind tunnel studies

ITS3 ASIC design at Nikhef: ET

First submission 2021 multilayer reticle 1:

- Bandgap reference circuits
- Temperature sensor
- Voltage controlled oscillator (VCO)
- A. Yelkenci et al 2023 JINST 18 C02017

Engineering run 1: stitched sensors

- 2-stage low drop out (LDO) regulator
- phase locked loop (PLL)
- Serializer at 10.28 Gb/s

ITS3 sensor characterization: Detector R&D

DPTS1 signal time - DPTS2 signal time (ns)

12

Sensor characterization: Detector R&D

Large structures arriving soon: Nikhef preparations

- First MAPS for high energy physics using stitching
- First full structures will come to Nikhef soon!
- "MOST": 2.5 x 259 mm,
 0.9 MPixel (18 x 18 μm²)
- Carrier board designed at Nikhef/Utrecht
- Preparing for characterization

197

2034 and onward: ALICE3

Exciting Physics & Exciting new Technologies

Steering group members Upgrade Coordinator Chapter convener

Co-coordinator of the

- Compact (r ≃2m, z ≃ 8m)
- Large acceptance, $|\eta| < 4$, $p_T > 0.02$ GeV/c
- Superconducting magnet system
- Max field: B = 2 T (0.5 T runs foreseen)
- Continuous readout and online processing
- Pointing resolution $^{\sim}3-4 \ \mu m$ and p_T resolution better than 1% @1 GeV/c
- Particle Identification (PID) in a wide range of momenta and $|\eta| < 4$

Innermost layer fluence: $1e16 / cm^2$: similar to ATLAS, CMS phase 2 constraints Innermost layer rate: 94 MHz/cm² and maximum power consumption: 70 mW/cm²

ALICE3 at Nikhef: inner tracker

- Iris in-vacuum retractable vertex tracker at just
 5 mm from beam line
- Spatial resolution 2.5 μm with 10 μm pitch pixels
- 1.5 m² inner barrel time-of-flight layer at 19 cm and $|\eta| < 1.75$ with time resolution of 20 ps

Timing: synergy with LHCb and ATLAS

Nikhef will contribute to inner tracker time of flight layer **Simulations** and **timing characterization** for sensor development ongoing at Nikhef

radius [mm]

ALICE Detector R&D Exciting new technologies for exciting physics

6

Additional material

ALICE inner tracking system 2 (ITS2)

- Inner Tracker: 3 layers, 22-42 mm from IP, 0.36% X
- Outer Tracker: 4 layers, 194-395 mm from IP, 1.1% X₀
- Pixels of 27 μm x 29 μm
- 12.5 GPix 10 m² active area
- 24120 chips from 200 mm wafers
- ITS2 (now): 0.36% (inner), 1.1% (outer)

ITS3: more precise vertexing and tracking

Large improvement especially at low p_{T}

Strange beauty particles

- For studies of hadronisation in heavy ion collisions
- The Compact Muon Solenoid (CMS) Experiment made first measurement B⁰_S / B_{not S} in Pb Pb collisions vs pp collisions – with large uncertainties
- ALICE also measured this
- Both see an enhancement, but no significant observation
- Large improvement with ITS3
- ITS3 can extend measurement to lower p_T

This all thanks to a close proximity to IP and a very low material budget!

Remove "unnecessary" material from ITS2

Testing the air cooling

measurement

system

Filter

Temperature

sensor

Velocity

sensor

Flow

distributors

Mass

ow meters

Valves

Manifold

Mechanical and thermal stability tests ongoing

Air cooling

- Thermal and stability tests ongoing
- Development of models based on heating elements
- Placed in custom wind tunnel to study thermal and mechanical properties

First bending with *superALPIDEs*

8 9 10 11

23 24 25 26 27 28 29 30 31 32

38 39 40

36

- **ALPIDE: ALICE PIxel DEtector** used in ITS2
- $40 \ \mu m$ thick sensors
- Bent to a radius of 18 mm

Beam test studies with bent sensors

- Bending silicon wafers and functional ALPIDEs is now routine
- Full mock-up of the final ITS3: "µITS3" bent to ITS3 radii tested
- Spatial resolution uniform among different radii
- Efficiency and resolution consistent with flat ALPIDEs

More results in doi:10.1016/j.nima.2021.166280

Characterization of new 65 nm technology for ITS3

- Several submissions, prototype of final wafer-scale chip expected 2024
- Now investigating many different small prototypes from a multi-layer reticle to qualify 65 nm technology
- One such prototype is a digital pixel test structure that acts as a technology demonstrator
- Results published: <u>doi:10.48550/arXiv.2212.08621</u>

First chips bent to 18 mm radius and successfully tested with Fe-55 source

- 32 by 32 pixels with asynchronous digital readout
- $15 \times 15 \ \mu m^2$ pixels whose position is time encoded in the readout 27

doi:10.48550/arXiv.2212.08621

In-pixel detection efficiency after $\Phi_{eq} = 10^{15}$ / cm²

Efficiency loss as expected: occurs in corners far from collection electrode. No charge sharing.

Stitched sensor prototypes

- 2 different structures, MOSS and MOST
- MOSS 14 x 259 mm², 6.72 MPixel structure
- MOST 2.5 x 259 mm², 0.9 MPixel structure
- Full structure will be 2.5 times as large
- Pixels of 22.5 x 22.5 μm² and 18 x 18 μm²
- To be tested for yield and uniformity
- Pad wafer at CERN
- First full wafers arriving soon

ITS3 geometry

Beampipe inner/outer radius (mm)		16.0/16.5	
IB Layer parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	270	270	270
Pseudo-rapidity coverage ^a	± 2.5	±2.3	±2.0
Active area (cm^2)	305	408	508
Pixel sensors dimensions (mm ²)	280×56.5	280×75.5	280×94
Number of pixel sensors / layer		2	
Pixel size (μm^2)	$O(15 imes15)^b$		

ALIC

Current inner tracking system ITS2 inner three layers

ITS3: three new, ultralight, truly cylindrical layers

- Replace current pixel detector inner layers with half-cylinders of bent, thin silicon
- Use stitched, wafer-scale sensors

- ITS3 "engineering model t" made of 3 layers of dummy silicon, 40-50 µm thickl put design blocks together during processing of silicon
 - Can make chip larger than the field of view of the lithographic equipment

Different process modifications

- Motivated by better charge collection
- Higher speed may serve for monolithic sensors with timing functionality that could be applied in ALICE3

Particle identification improves with precise timing HL-LHC ALICE pileup: 5-10

