

TAMING INFINITIES A THEORIST JOB

c.marinissen@nikhef.nl

Supervisors: Eric Laenen & Marcel Vonk

May 15, 2023

Renormalisation

- Infinite number of counter terms X
- Finite number of counter terms \checkmark

Renormalizable field theories

• For renormalizable field theories, perturbation theory looks fine

• For renormalizable field theories, perturbation theory looks fine

• For renormalizable field theories, perturbation theory looks fine

PERTURBATION THEORY

• Perturbative expansions in QFT:

$$\mathcal{O} = \sum_{n=0}^{\infty} c_n \alpha^n$$
, with $c_n \sim n!$

• Problem: divergent for all $\alpha \neq 0 \implies asymptotic$ series

PERTURBATION THEORY

• Perturbative expansions in QFT:

$$\mathcal{O} = \sum_{n=0}^{\infty} c_n \alpha^n$$
, with $c_n \sim n!$

- Problem: divergent for all $\alpha \neq 0 \implies asymptotic$ series
 - I. Numerical value?

2.Reason? → Non-perturbative effects are missing
3. Source? Instantons → #Feynman diagrams (Renormalons → Bubble diagrams ['t Hooft '77]

SAVING PERTURBATION THEORY

Strategy I

"Naive" approach → Neglect increasing terms

- Works reasonable well
- Example: Standard model

SAVING PERTURBATION THEORY

Strategy I

"Naive" approach → Neglect increasing terms

- Works reasonable well
- Example: Standard model

• Mathematical theory to study asymptotic series

[J. Écalle 1985]

Example:
$$x^2 \frac{df}{dx} = -x + f$$

Try perturbative Ansatz: $f(x) = \sum_{n=0}^{\infty} c_n x^{n+1} \rightarrow c_n = n!$

Two problems:

- I. Divergent for all $x \neq 0$
- 2. first order ODE: free parameter?

Hom. eq.
$$x^2 \frac{dg}{dx} = g \quad \Longrightarrow \quad g(x) = C e^{-1/x}$$

$$x^{2}\frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

$$x^{2}\frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

Apply Borel summation $| \cdot \mathscr{B}[f](t) = \sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$ $2 \cdot \mathscr{L}[\mathscr{B}[f]](g) = \int_0^{\infty} \frac{e^{-t/x}}{1-t} dt$ $f(x) = \sum_{n=0}^{\infty} c_n x^{n+1}$ $f(x) = \sum_{n=0}^{\infty} c_n x^{n+1}$ $f(x) = \sum_{n=0}^{\infty} c_n x^{n+1}$

$$\mathcal{L}(x) = \sum_{n=0}^{\infty} c_n x^{n+1} \xrightarrow{\text{Borel transform}} \mathcal{B}[f](t) = \sum_{n=0}^{\infty} \frac{c_n}{n!} t^n$$

$$\mathcal{B}[f](t) = \sum_{n=0}^{\infty} \frac{c_n}{n!} t^n$$

$$\mathcal{B}[f](t) = \sum_{n=0}^{\infty} \frac{c_n}{n!} t^n$$

$$\mathcal{B}[f](t) = \int_0^\infty e^{-t/x} \mathcal{B}[f](t) dt$$

$$x^{2}\frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

$$x^{2}\frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

Apply Borel summation

$$|\mathcal{B}[f](t) = \sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$$

$$2. \mathcal{L}[\mathcal{B}[f]](g) = \int_0^\infty \frac{e^{-t/x}}{1-t} dt$$

$$x^{2} \frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

Ambiguity reveals that perturbative solution is part of a larger class of solutions:

$$f(x, C) = \int_{\gamma_{\pm}} \frac{e^{-t/x}}{1-t} dt + C e^{-1/x}$$

$$x^{2}\frac{df}{dx} = -x + f$$
Perturbative solution: $f(x) = \sum_{n=0}^{\infty} n! x^{n+1}$
Homogeneous solution: $g(x) = C e^{-1/x}$

Ambiguity reveals that perturbative solution is part of a larger class of solutions:

$$f(x, C) = \int_{\gamma_{\pm}} \frac{e^{-t/x}}{1-t} dt + C e^{-1/x}$$
 Non-perturbative term resurged

To do:

I. Compute enough coefficients

2. Learn to do resurgence with only a few perturbative coefficients

CONCLUSION

- Non-perturbative information is hidden in perturbative coefficients
- Asymptotic growth: it can be tamed, nothing to be afraid of!

OPTIMAL TRUNCATION

• In practice: we only have a few coefficients of the asymptotic series.

 $\mathcal{O}(g) = \sum_{n=0}^{N} c_n g^n$ \rightarrow Why is it still a good estimate of experiment?

- Consider $c_n = \frac{n!}{A^n}$
- Use Stirling approximation to find optimal truncation $|c_n x^n| = n! \left| \frac{x}{A} \right|^n \approx \exp\left(n \log n - n - n \log \left| \frac{x}{A} \right| \right)$ • This has a saddle given at $N = \left| \frac{A}{x} \right|$

• Evaluating the next term gives the error made in the optimal truncation

$$c_{N+1} |x|^{N+1} \sim e^{-|A/x|}$$

• Conclusion: Borel summation and optimal truncation agree up to (small) non-perturbative exponential factors

- First discovered by 't Hooft ['t Hooft '77]
- Classes of diagrams that causes perturbative coefficients to grow as $c_n \sim n!$
- Often related to so called bubble diagrams
- Ingredient: $-\log(k^2)$

• Schematic computation

$$\operatorname{vec}\left(\begin{array}{c} \sum_{n=0}^{\infty} \alpha \int_{0}^{\infty} dk^{2} F(k^{2}) \left[\alpha \log(k^{2}) \right]^{n} \right)$$

Schematic computation

• Schematic computation

$$\sum_{n=0}^{\infty} \alpha \int_{0}^{\infty} dk^{2} F(k^{2}) [\alpha \log(k^{2})]^{n}$$

$$HR: \quad k^{2} \ll 1$$

$$\cup \forall : \ k^{2} \gg 1$$

$$F(k^{2}) = \begin{cases} 1 + k^{2} + \dots, \quad k^{2} \ll 1 \\ \frac{1}{k^{4}} + \dots, \quad k^{2} \gg 1 \end{cases}$$

• More general: $f_n \sim n! \left(1 + \frac{a}{n} + \frac{b}{n^2} + \dots \right)$ $\mathscr{B}[f](t) \Big|_{t=1} = \frac{a}{t-1} + \psi(t-1)\log(t-1)$ t = 1

• Writing $\psi(t) = \mathscr{B}[f^{(1)}](t)$, where $f^{(1)} = a + \sum_{n=0}^{\infty} f_n^{(1)} x^{n+1}$

•
$$f(x, \sigma) = f^{(0)}(x) + \sigma e^{-1/x} f^{(1)}(x)$$

• More general:
$$f_n \sim n! \left(1 + \frac{a}{n} + \frac{b}{n^2} + \dots \right)$$

 $\mathscr{B}[f](t) \Big|_{t=A} = \frac{a}{t-A} + \psi(t-A)\log(t-A)$

• Writing $\psi(t) = \mathscr{B}[f^{(1)}](t)$, where $f^{(1)} = a + \sum_{n=0}^{\infty} f_n^{(1)} x^{n+1}$

•
$$f(x, \sigma) = f^{(0)}(x) + \sigma e^{-A/x} f^{(1)}(x)$$

• More general:
$$f_n \sim n! \left(1 + \frac{a}{n} + \frac{b}{n^2} + \dots \right)$$

 $\mathscr{B}[f](t) \Big|_{t=A} = \frac{a}{t-A} + \psi(t-A)\log(t-A)$

$$t = A$$

$$t = 2A$$

• Writing $\psi(t) = \mathscr{B}[f^{(1)}](t)$, where $f^{(1)} = a + \sum_{n=0}^{\infty} f_n^{(1)} x^{n+1}$

$$f(x,\sigma) = f^{(0)}(x) + \sigma e^{-A/x} f^{(1)}(x) + \sigma^2 e^{-2A/x} f^{(2)}(x) + \dots$$

• More general:
$$f_n \sim n! \left(1 + \frac{a}{n} + \frac{b}{n^2} + \dots \right)$$

 $\mathscr{B}[f](t) \Big|_{t=A} = \frac{a}{t-A} + \psi(t-A)\log(t-A)$

$$t = A$$

$$t = 2A$$

• Writing
$$\psi(t) = \mathscr{B}[f^{(1)}](t)$$
, where $f^{(1)} = a + \sum_{n=0}^{\infty} f_n^{(1)} x^{n+1}$

$$f(x,\sigma) = f^{(0)}(x) + \sigma e^{-A/x} f^{(1)}(x) + \sigma^2 e^{-2A/x} f^{(2)}(x) + \dots$$

• Transseries:
$$f(x, \sigma) = f^{(0)}(x) + \sum_{n=1}^{\infty} \sigma^n e^{-nA/x} f^{(n)}(x)$$

Perturbative sectors Non-perturbative sectors

Large order relations (true in large *n* limit)
$$f_n^{(0)} \sim \sum_{h=0}^{\infty} \frac{(n-h)!}{A^{n-h}} f_h^{(1)} + \sum_{h=0}^{\infty} \frac{(n-h)!}{(2A)^{n-h}} f_h^{(2)} + \sum_{h=0}^{\infty} \frac{(n-h)!}{(3A)^{n-h}} f_h^{(3)} + \mathcal{O}(4^{-n})$$

ALIEN DERIVATIVES [J. Écalle 1985] [D. Sauzin, 1405.0356]

•Resurgence \longleftrightarrow singularity structure in the Borel plane:

$$\mathscr{B}[F](t) \bigg|_{t=\omega} = \frac{a}{t-\omega} + \mathscr{B}[G](t-\omega)\log(t-\omega) + \text{regular terms}$$

• Underlying mathematical structure of resurgence can be captured by Alien derivatives:

$$\Delta_{\omega} F = a + G$$

If ω is not a singular point of $\mathscr{B}[F]$, then $\Delta_{\omega} F = 0$
Properties: $\Delta_{\omega}(FG) = F(\Delta_{\omega}G) + (\Delta_{\omega}F)G$

•For a one-parameter transseries 🔶 Écalle's bridge equation

$$f(x,\sigma) = \sum_{n=0}^{\infty} \sigma^n e^{-nA/x} f^{(n)}(x) \implies \Delta_{\ell A} f^{(n)} = \begin{cases} 0 & \ell > 1\\ (n+\ell)S_{\ell} f^{(n+\ell)} & \ell \le 1, \quad \ell \ne 0 \end{cases}$$

Stokes constants

ALIEN CHAIN [Aniceto, Basar, Schiappa, 1802.10441]

"Standard" resurgence picture

. . .

ALIEN CHAIN [Aniceto, Basar, Schiappa, 1802.10441]

"Standard" resurgence picture

Backward motions

. . .

TWO PARAMETER TRANSSERIES

• More than one non-perturbative exponent $e^{-A_1/x}$ and $e^{-A_2/x}$

Two parameter transseries: $f(x, \sigma_1, \sigma_2) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sigma_1^n \sigma_2^m e^{-nA_1/x} e^{-mA_2/x} f^{(n,m)}(x)$

- Alien lattice
- Richer structure of allowed alien motions

[Aniceto, Basar, Schiappa, 1802.10441]

•

TWO PARAMETER TRANSSERIES

• More than one non-perturbative exponent $e^{-A_1/x}$ and $e^{-A_2/x}$

Two parameter transseries: $f(x, \sigma_1, \sigma_2) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sigma_1^n \sigma_2^m e^{-nA_1/x} e^{-mA_2/x} f^{(n,m)}(x)$

- Alien lattice
- Richer structure of allowed alien motions

[Aniceto, Basar, Schiappa, 1802.10441]

•

TWO PARAMETER TRANSSERIES

• More than one non-perturbative exponent $e^{-A_1/x}$ and $e^{-A_2/x}$

Two parameter transseries: $f(x, \sigma_1, \sigma_2) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sigma_1^n \sigma_2^m e^{-nA_1/x} e^{-mA_2/x} f^{(n,m)}(x)$

- Alien lattice
- Richer structure of allowed alien motions

[Aniceto, Basar, Schiappa, 1802.10441]

•

Schematic computation

$$\sum_{n=0}^{\infty} \alpha \int_{0}^{\infty} dk^{2} F(k^{2}) [\alpha \log(k^{2})]^{n} \qquad \quad \text{iR:} \quad k^{2} \ll 1$$
$$\quad \text{UV:} \quad k^{2} \gg 1$$
$$F(k^{2}) = \begin{cases} 1+k^{2}+\dots, & k^{2} \ll 1\\ \frac{1}{k^{4}}+\dots, & k^{2} \gg 1 \end{cases}$$

- Renormalons: n! growth from a single class of diagrams
 - IR renormalons: $(-1)^n n!$
 - UV renormalons: n!
- Will see later that this is the QED picture, in QCD the role of UV and IR renormalons will be switched
- Related to non-perturbative power corrections: $\left(\frac{\Lambda}{O}\right)^{p}$