Nik|hetf
Radboud University - Nikhet

High Energy Physics department - ATLAS team

ChatGPT
as a Coding Assistant

dr. ir. Uraz Odyurt, dr. Geoffrey Gilles Eﬁ-
2023.06-15 F AATLAAS

“Why should | care”?”

* |tis being adopted, fast ...
e Journals and publishers starting to recognise and regulate its use

e You will fall behind if you don’t consider it (?)

IEEE - Guidelines for Artificial Intelligence (Al)-Generated Text:

“The use of artificial intelligence (Al)—generated text in an article shall be disclosed in the
acknowledgements section of any paper submitted to an IEEE Conference or Periodical.

The sections of the paper that use Al-generated text shall have a citation to the Al system
used to generate the text”.

https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/submission-and-peer-review-policies/#ai-generated-text

Stating the obvious ...

. What is ChatGPT?

e \What is ChatGPT?

@ O pen AI @ ChatGPT is a large language model developed by OpenAl, based on the GPT-3.5

architecture. It is designed to generate human-like responses to natural language input,

allowing users to have conversations with the model as if it were a human. ChatGPT has

 Language model => Any use-case relevant to languages ...
=> Writing
=> Summarising
=> [ranslation
=> Comparison
=>
=> Code generation
and tasks related to coding

. Can you teach me how to cook beef bourguignon?

. Can you tell me the arguments in favour of god's existence?

- Can you compare the economy of Japan with South Korea?

Stating the obvious

Natural language and code input:

=> GPT-3.5-turbo -> Input tokenisation limit is 4096
=> GPT-4 -> Input tokenisation limit is 8192

=> GPT1-4-32k -> Input tokenisation limit is 32768

Interaction: Human-like responses -> Intended as an assistant

Let us focus on code generation, as an assistant for programmers
=> Code generation

=> (Generating documentation

=> Debugging
=> [utoring and self-learning

=> Alternative ideas, different implementations

Some statistics

User acceptance?
=> 1 million users in 5 days (launched in November 2022)
=> 13 million users daily (January 2023)

Costs? (time and money)

=> $3 million per month to run (estimated - cloud)

=> $5 million to train (estimated - cloud)

=> ~355 years to train (single NVIDIA V100 Tensor Core)
=> ~34 days to train (1023 NVIDIA A100 Tensor Core)

|source]

v

https://www.stylefactoryproductions.com/blog/chatgpt-statistics

A language model you say ...

 Model: A model is a simplified virtual representation of something

real, resembling/predicting its behaviour

 Language event: A linguistic unit, text, sentence, token, symbol, ...

* |Language Model (LM): Given a known context, estimate the

probability of following events

=> (Good LM: High probability for correct completions

7?79

1S
1S
1S

favouri
favouri

€S
€S

favourl

€S

00
00

00

1, ca
1 ca

1 ca

listhenics, ...

ISt
ISt

ne nics, ...

nen Ics ...

A language model you say

 We cannot have all possible sentences, but the building blocks ...

e “Sentence” as a unit is not granular enough.
=> |Let’'s consider words as atomic units ...

P(BNA) = P(A)- P(B|.)

* The joint probability of B and A occurring means the probability of A
occurring, multiplied by the probability of B occurring given that
A has occurred (context)

A language model you say ...

P(A)

3, given A

P(BnN A)
P(A)
CN(BNA))

P(B N A)

P(B|A) = —> P(BN A) = P(A) - P(B|A)

P(C|BNA) = il

—> P(CNBNA)=P(A) - P(B|A)- P(C|BN A)

* The probabillity of all the words being in one sentence

=> And in the given order -> Respects the ordering
P(ey,es,...,e,) = P(e1) - P(esler) - Plesler,es) ... - Plenler, e, ..., en_1)

:HP(et|ei:O<i<t)

t=1

A LM lists such probabilities ...

P(* || saw a raven)
flying = 0.62
walking = 0.27

summer = 0.01

10

Access to ChatGPT and cost

https://chat.openai.com/auth/login
=> Requires registration

Different tiers of service

=> Free Research Preview: Currently running on GPI1-3.5
=> Paid tier (ChatGPT Plus): Currently running on GPT-4
(GPT-4 is a different story ...)

=> APl access: Pay per API| call scheme

Embedded in Bing search engine
=> Requires a Microsoft account ®

11

https://chat.openai.com/auth/login

Training data (up to 2021)

* [o understand natural language and generate responses
=> |Involves NLP techniques, ...

e [ext data from various sources
=> Common Crawl: A large dataset of web pages
=> BooksCorpus: A collection of over 11,000 books
=> Wikipedia: You know what it Is!
=> OpenWebText: A curated collection of web pages
=> Stories from Reddit: A collection of short stories and comments
=> English Gigaword: A large dataset of news articles

12

Training data (up to 2021)

Data related to programming languages
=> StackOvertlow, GitHulb, and other programming forums ...

A variety of technical documentation and tutorials related to
orogramming languages

Which programming languages”
=> Python, Java, C++, JavaScript, Ruby, and many more ...

Programming languages: Syntax + semantics
=> Formal evaluation

13

Extensive knowledge of
orogramming languages

* Abllity to understand and interpret natural language queries
related to programming
=> Syntax
=> Semantics

* Benefitting from the OpenAl “Cedex” (deprecated -> GPT-3.5)
=> Demo: Creating a sSpace Game with OpenAl Codex
=> Separate OpenAl language model, designed for code generation
=> |nterfaced to a large curated code database
=> Millions of code snippets
=> Organised by language, libraries and frameworks
=> Accompanied by metadata on function, inputs and outputs

—xample => "GitHub Copilot uses the OpenAl Codex to suggest code and entire functions in real-time.” _,

https://youtu.be/Zm9B-DvwOgw

AS a coding assistant

: Code review
Error resolution - . .
& optimisation

* |dentifying and resolving Code analysis and
coding errors feedback
e Guidance - How to fix * Optimise code for

performance

Algorithm design :

* Right algorithms * Detalled documentation
* Best libraries anad * \Verbose explanations

frameworks * Simple diagrams

* But inability to solve too * Limited by practical
complex or overarching experience and context
Issues awareness of the user

 Unable to write extensive * Analytical explanations are
code, but rather provide generic and follow known
relevant code snippets knowledge/best practices

Iterative
approach

Provide
examples

Concise
commands

Tokenise
the input

Queries can have different answers
|dea generation by observing different ways of coding
It you didn't like the answer => Regenerate response!

An iterative, step-by-step process
Clear action: “Translate this text”, “Write a Python script”
More explanation: "Keep writing”, “Keep coding’, ...

Steer the response with examples
Minimal example input

State the expected action.
Formatting instructions: “Format in Markdown”, “Limit to 1000 characters”

Surround in backticks/backqguotes
"def function(argl, arg2):
some code ...

Indecision for the user
=> Can’t decide”? Ask for a
comparison!

Sessions have lasting effects
Start over a fresh session

Sometimes we do not have
an example in mind

Cannot perform tasks
requiring intellect/imagination
or spontaneous decisions

Consider the input
tokenisation limit

Can we trust the output”

Johnny English
at your service!

Describe 0077

17

Can we trust the output?

e Short answer: No!

e Validation is the key
=> You need partial/total expertise in the relevant field

* Proper answer: It depends ...
=> For languages with an extensive training corpus: Yes!
(also programming languages)
=> For common tasks: Yes!
(to save time)

Towards a Benchmark for Scientific Understanding in Humans and Machines

18

https://arxiv.org/abs/2304.10327

How capable is it?

 (Get ready to be impressed!

e A few examples:
=> HEP task - Madgraph event generation
=> HEP task - ROOT visualisation
=> Specialised coding - Scopus API
[f time allows:
=> (Generic coding - Classes in C++
=> |.earning - Pylorch, view and reshape
=> |earning - DataFrame and memory usage
=> (Generic coding - Sorting algorithms

19

Personal takes ...

* |s it a good thing to have a machine as our assistant”

inani imi i
' . . I i1 I m i m 1] ' o] |
—> | e aS < OI I “ l |OI l aS a teXt e tOr 00000000000000000FO00000000FICUOFO0O0000000000000000H000500000000000000000Fg0F00f
|| | 123456 78 31001121318 1516176192021 2223242526 27 2023 20 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5560 61 52 63 64 6566 67686970 T 72 713 74 1575 77 18 13 80
I RRRRRERET RN B ERRRREY B ERRRRRY | B RRRRR R R R RN R R R R R RS R R RN RRRRRRRRER R R

22022222222222220222222220222222222022
333323333333333330333333333333333333'333333333333333333333333333333333333333]3
4444444444444444444444444444444440444J4440444444448444484444444444444404444 44444

" 55555555555505 055555 055055555 QNS5 H55555055

® There are ObVlOUS advantages 66666666W66066566666666656666666566
17777107777717771 0 0177171771701 1110 1 07171771171111777177711111717771711171101077717

A 'b‘ ‘ b‘ . b‘ ‘ k f .t' 8888888888cNeNscHecleoNooNocNNeaNsslsalo8888883858888888888088808888883888683888

=> ACCESSIDIE, SCalable, Improvaole, [aCK O €ImOotioNns THTL L EEETHTIREE | TP ST T I P LEECEEPECITY

 People

=> Are not all experts -> we need more experts
> (Get tired -> not available 24/7
> Have a mind of their own -> order-action style of interactior
=> Are volatile -> grumpy, angry, sad, moody, bored, impatient,
overwhelmed, underwhelmead, ...

import torch import csv

import numpy as n
create a 1D tensor P py p

x = torch.tensor([1, 2, 3, 4, 5, 6])
print(x)
Output: tensor([1, 2, 3, 4, 5, 61)

Generate dummy data
names = ['Alice’', 'Bob', 'Charlie', 'David', "Emily']
ages = np.random.randint(low=20, high=50, size=len(names))

) . cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Miami']
reshape the tensor into a 2D tensor with 2 rows and 3 columns

x.view(2, 3)
printCy)
Output: tensor([[1, 2, 3],
#include <iostream> # [4, 5, 611D

Write data to CSV file

with open('dummy_data.csv', mode='w', newline='") as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age', 'City'])
for 1 in range(len(names)):

class Car # h the t int Dt ith 2 ch 1ls, 1 d 1
{ reshape the tensor into a 3D tensor wi channels, row, and 3 columns writer.writerow([names[i], ages[i], cities[i]])

public: = x.view(Z, 1, 3)
// Constructor print(z)
Car(std::string # Output: tensor([[[1, 2, 311,
L[4, 5, 611D

process = MG.MadGraph5Interface(proc_card="'p p > h > gamma gamma',)

Set the process energy and number of events to generate
process.run_cfg['run_mode'] = @ # "Run" mode for event generation

// Member functio
void startQ {

std::cout << "Starting the process.run_cfg['nb_event'] = 1000 # Number of events to generate

process.run_cfg['energy'] = 13000 # Center-of-mass energy in GeV

<< make_ <<
def quicksort(arr):

if lenCarr) <= 1:
return arr

}
void stop(Q) {

std::cout << "Stopping the " << make_ << " " import requests
import json

Generate events and save them to a file
else: process.run_cmd()
pivot = arr[lenCarr)//2]

left = [x for x in arr if x < pivot]

private: # Set the API key and search query parameters

right = [x for x in arr if x > pivot] // Data members api_key = "YOUR_API_KEY'
ght = or X in arr i > p1vo query = 'TITLE-ABS-KEY("data mining") AND PUBYEAR AFT 2018'

middle = [x for x in arr if x == pivot]

std::string make_;

std::string model_;
int year_; # Define the API endpoint and request parameters

}; url = "https://api.elsevier.com/content/search/scopus’

return quicksort(left) + middle + quicksort(right)

arr = [5, 2, 9, 3, 7, 4, 8, 1, 6]
sorted_arr = quicksort(arr)

params = {'apiKey': api_key, 'query': query, 'field': 'dc:identifie
class Lorry : public Car {

Send the request to the Scopus Search API and get the response
response = requests.get(url, params=params)

Parse the response and extract the publications' metadata
if response.status_code == 200:
data = json.loads(response.text)
for item in data['search-results']["entry']:
identifier = item['dc:identifier']
title = item['dc:title"]
journal = item['prism:publicationName']
date = item['prism:coverDate']

