
YOU, LOGIN, AND
LINUX

Nikhef Computing Course, Tuesday 2022-11-22

Dennis van Dok

1

LEARNING GOALS
Know how to login; ssh keys, protecting ssh keys,
setup and safely use (proxy) tunnels
Basic passwords security
Manage your personal home page
Understand and apply general unix principles
Basics of scripting and programming
Know the most common command line tools
Understand file permissions and how to change
them

3

UNIX FOR PHYSICISTS

5

The purpose of this talk is to give a few helpful pointers to
aspects of the general Linux computing environment that
may be beneficial to know for a student of physics, i.e.
not someone who purposely explores the realm of
computing but rather sees this as (at best) a useful tool or
(at worst) a necessary hurdle to overcome.

6

THE PHILOSOPHY OF UNIX

What? Unix has a philosophy?

7

YES! AND CULTURE, TOO

The Unix environment has never been known to be
particularly user friendly and it can be daunting to get
started.

The general philosophy seems to be that the user is
supposed to be able to figure out how to solve even the
most complicated tasks using a combination of very
basic tools.

8

DO ONE THING…

There is a minimalist approach to Unix that may take a
little while to get used to.

The basic tools are made to work together
Everything deals with text streams
So tools can be strung together and one tool's
output is input to another
The user interface is secondary

9

FINDING SUPPORT

Although the learning curve can be steep, there is
actually plenty of help available.

Nowadays the web has plenty of answers
Your peers may be of tremendous support
With enough basic skills, finding help on your own
becomes very feasible

10

DEVELOPING SKILLS

12

SHOULD YOU LEARN A NEW SKILL?
time normally spent on related tasks

investment

rate of productivity increase

T

I

R

13

SHOULD YOU LEARN A NEW SKILL?
T time normally spent on related tasks

I investment

R rate of productivity increase

Learning a skill is worthwhile if

T ≥ I +
T
R

13

SHOULD YOU LEARN TOUCH TYPING?

14

SHOULD YOU LEARN TOUCH TYPING?

T ≈ 1000h
I ≈ 10h
R ≈ 2

14

SHOULD YOU LEARN TOUCH TYPING?

T ≈ 1000h
I ≈ 10h
R ≈ 2

(Yes, absolutely)

14

SO HOW WILL I KNOW WHAT TO LEARN?

, , and can only be learned from experience.T I R

15

UNIX PRIMER
The operating system that you will encounter for most of
your work is called Linux. it is an open source
implementation of the UNIX operating system (originally)
for the x86 architecture.

Starting in 1991, it rapidly gained traction due to the
ubiquity of cheap PC hardware. It outpaced commercial
UNIXen in many fields.

It may by now be considered the de facto standard for
web servers, cloud computing and server and batch
computing.

17

LINUX AT NIKHEF
The Linux kernel is core of the computing environment,
but that made complete by a plethora of tools and
services to integrate with it. This integration is done by
companies and organisations that bundle everything up
and make it available for installation and use. These are
called distributions.

18

RED HAT ENTERPRISE LINUX

The distribution of choice in our field has been based on
the Red Hat Enterprise Linux suite. Because Linux and all
of the so�ware that goes with it is open source, anybody
can take the sources and rebuild what Red Hat has done.

This has happened several times. The CentOS
distribution used to be a faithful rebuild of RHEL, but it
has been bought by Red Hat and effectively dismantled;
future rebuilds will be sourced from teams like Alma
Linux or Rocky Linux.

19

THE BASICS
Linux is a multi-user, multi-tasking operating system. The
kernel will schedule processes to use the available cores
in a time-sharing fashion. The processes may interact
with the system through system calls. File system
interactions, network call-outs and virtual memory
requests all go through the kernel.

Linux complies with the POSIX specification.

20

INPUT AND OUTPUT
In the most basic form, each process has three input and
output streams.

stdin standard input
stdout standard output
stderr standard error

These may be connected to a (pseudo) terminal for
interactive user shells.

21

PROCESSES
Every process in the system is listed in the process tree
and has a unique ID. The process with PID 1 is the startup
process that is responsible for getting the entire system
started up. Every other process is a child or descendent of
this process. New processes are created by forking the
parent process; the child inherits all of its parent's
properties, like memory and open files.

22

MEMORY MANAGEMENT
Linux employs a virtual memory mapping system that
gives each process it's own private space. The program
code is mapped into the code segment; the data segment
is allowed to grow as more memory is demanded. There
is no guarantee that requested virtual memory is actually
available as physical RAM. Linux employs an
oversubscribing model that allows processes much more
virtual memory than is technically available, because in
practice many programs do not actually use all of the
requested memory.

23

SWAP

If the system runs out of RAM it will start to map pages
out, preferring pages that have been least recently used.
If that is not enough, some of the memory may be
committed to swap space. This usually slows down the
system considerably.

24

THE FILE SYSTEM
All files in the system are organised in a single file tree.
The root of the tree is usually on the local hard drive, but
various parts of the file system may be mounted from the
network. There are also some pseudo file system entries
that give a file-like view of parts of the system, such as
/proc for the process table, and /dev for connected
devices such as peripherals.

25

PERMISSIONS

Each entry in the file tree has a set of permission bits:

This can be symbolically represented as above or as an
octal number:

The execute permission is used for both traversing down
a directory and for actual execution of programs.

 ,- user (read, write, execute)
 | ,- group (read, write, execute)
 | | ,- other (read, write, execute)
 | | |
-rwxrwxrwx

-rwxr-xr-x 755
-rw-r----- 640

26

LINKS AND INODES

Each entry in the file system has an inode that is linked to
a directory. Directories link to themselves (seen as the '.'
entry) and to their parent directory ('..'). Opening a file in
a process increases the link count, removing it from a
directory decreases the link count. When the link count
hits 0, the file is considered deleted and its storage space
may be recycled.

27

HARD AND SYMBOLIC LINKS

A file may be linked multiple times, in different
directories and under different names. Directories may
not be linked in this way, as that would lead to chaos.

This type of link is called a hard link. It's counterpart the
symbolic link is simply a string of text that points to
another location.

File permissions don't apply to symbolic links. The
system will treat the use of symbolic links as if the target
file was meant.

lrwxrwxrwx. 1 root root 7 26 mrt 2020 bin -> usr/bin/

28

USERS, GROUPS AND PRIVILEGE
The process with PID 1 is run under user ID 0, or root. This
is the system account that has full privileges over the
system. Only system administrators can use this account.

There are many system user accounts for running system
services that don't require full access.

Each process runs under a certain user and group ID. This
ID determines what parts of the file system the process
has access to. The Nikhef systems share the user and
group identity through the LDAP directory.

29

NETWORK SOCKETS
Processes may open sockets on the network. An internet
socket has an address and a port number (0–65535).
Outbound connections can be made to send and receive
data.

Listening on local ports allow other processes to connect
inbound.

A connection has two ports: a source and destination.
Port numbers below 1024 are considered privileged.

Firewall rules restrict what kind of traffic is allowed,
either inbound or outbound.

30

GETTING UNIX
Getting Linux on your laptop:

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://so�ware.opensuse.org/
https://rockylinux.org/download/
https://mirrors.almalinux.org/isos.html

32

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://software.opensuse.org/
https://rockylinux.org/download/
https://mirrors.almalinux.org/isos.html

APPLE HARDWARE
OS X = Unix
VirtualBox/VMWare
hard-core install Linux anyway

33

MICROSOFT WINDOWS
O�en the best choice when there is but one choice. In
that case:

Dual Boot
VMWare/VirtualBox
CygWin
WSL 2

34

https://www.cygwin.com/
https://docs.microsoft.com/en-us/windows/wsl/

PROGRAMMING LANGUAGES

36

SCRIPTING LANGUAGES
No compilation required
Easy prototyping
Can be used interactively
Ideal to build workflows

Examples:

Bash (both interactive and for programming)
Python
Perl

37

COMPILED LANGUAGES
Translate down to the CPU instruction level
High performance
Various degrees of abstraction away from the
underlying architecture

Examples:

C/C++
Fortran
Go
Rust

38

MOST LIKELY COMBO
Python/C++

(Special recommendation: Jupyterlab)

39

A NOTE ON C++
There is a decade of architectural development between
current CPUs (AMD EPYC 7H12) and what we still had a
few year ago (Intel Xeon E5-2650). The clock speed,
however, is still in the same ballpark.

Principally, your C++ program will compile to both.
Technically, to make use of all the advancements in
processor design it takes a lot of insider knowledge of
both the CPU and compiler optimisation.

40

LOGIN AND STOOMBOOT
You will encounter Linux at Nikhef on the login server and
on the stoomboot batch system. Both run a Red Hat
Enterprise Linux compatible OS.

These systems are accessible via ssh.

42

THE LOGIN SERVER
The login server is the only system available to you if you
want to connect to the Nikhef infrastructure if you are not
on the Nikhef network.

(Using a VPN like eduVPN counts as being 'on' the Nikhef
network.)

This system should not be used for anything other than
the most basic tasks. It has no computational power, so
don't even think about compiling your so�ware here.

43

YOUR PERSONAL HOMEPAGE
The public_html in your home directory is automatically
turned into a web page. Write a basic HTML file called
index.html there and presto! You now have web home.

https://www.nikhef.nl/~dennisvd/

44

https://www.nikhef.nl/~dennisvd/

A FEW NOTES ON YOUR PUBLIC PRESENCE

You get to decide how much you want to share about
yourself. But be careful with publishing anything with
personal data of others!

Automation is great, but even a listing of a project
directory or the stoomboot queues may expose user
identities.
PHP scripts can be very powerful, but they may
contain security holes that invite abuse.

45

SSH
secure remote shell
Passwordless
versatile

47

HOW IT WORKS
A securely encrypted connection is made between the
client and the server.

The client authenticates itself by some means (e.g.
password, public key). If the user is authorised, the server
process forks a new shell on behalf of the user and
attaches is to a pseudo terminal device.

48

SETTINGS
.ssh/config

Host *.nikhef.nl
 ControlMaster auto

 ControlPath /tmp/%h-%p-%r.shared
Host *
 ForwardAgent yes

 User yournamehere
 HashKnownHosts yes

49

SSH PUBLIC/PRIVATE KEY

Permissions:

ssh-keygen
cat ${HOME}/.ssh/id_rsa.pub > authorized_keys

scp authorized_keys login:.ssh/authorized_keys

drwxr-xr-x .ssh/
-rw-r--r-- .ssh/authorized_keys
-r--r--r-- .ssh/id_rsa.pub
-r-------- .ssh/id_rsa

50

PUBLIC KEY AUTHENTICATION

The client authenticates by presenting a public key that is
authorised by the target user. A cryptographic challenges
is presented that the client can answer only because it
holds the private key.

The private key is really private. Don't share it or copy it
to other systems!

The public part goes to all machines that you want to log
on to.

51

MULTIPLE PRIVATE KEYS

If you have more than one device as your starting point
(e.g. a laptop but also a desktop computer at work) both
systems get their own private key. Just add both public
key to the authorized_keys file.

52

AGENT FORWARDING
ssh-add -l # list keys in the agent
ssh -A login # login with agent forwarding

53

SSH AGENT

Logging in through a chain of servers is easier with an ssh
agent. Normally an agent is already started for you.

The forwarding means that the agent can be reached
through a backchannel.

This saves so much typing of passwords that this should
almost be considered mandatory.

54

PROXY FROM OUTSIDE NIKHEF
Host stbci2.proxy

 Hostname stbc-i2.nikhef.nl
 user yournamehere

 CheckHostIP no
 ProxyCommand ssh -q -A login.nikhef.nl /usr/bin/nc %h %p 2>/dev/null

55

PROXY JUMPING

This little trick so useful that recent implementations of
ssh have now incorporated this functionality so you could
try the ProxyJump option instead. See the man page for
ssh_config.

In combination with Agent forwarding this means you get
to log on to Stoomboot from anywhere in the world
without typing your password once.

56

SSHFS
Fuse mount your remote home directory locally:

sshfs login.nikhef.nl: /tmp/login

ll /tmp/login/
fusermount -u /tmp/login

57

COMMAND LINE SHELL
tell the computer what to do, one line at a time
most powerful way of direct interaction
also used for scripting and fast prototyping
ideal for taking notes as you go

59

WHICH SHELL DO I NEED?
.

/bin/bash YES
/bin/zsh YES
/bin/csh !

select your default shell at https://sso.nikhef.nl/chsh

NO

60

https://sso.nikhef.nl/chsh/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

TUNING
everything can be tuned
but you must resist
use only the common enhancement

61

STARTUP FILES

login shell .bash_profile

non-login shell .bashrc

This distinction is outmoded.

62

.bash_profile

if [-f "$HOME/.bashrc"]; then
 . "$HOME/.bashrc"
fi

63

PATH

.bashrc

Do not put . in your PATH and certainly not at the
beginning! This poses a security risk because you will not
be sure that you are not running a program from a local
directory that you did not intend to run. It is better to
adopt the notation of ./program for local programs.

if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

64

COMPLETIONS

pressing TAB will auto-complete your command line
works better with the package bash-completions
installed

65

HISTORY

.bashrc

don't keep more than one copy of a repeated command
HISTCONTROL=ignoredups

append to the history file, don't overwrite it
shopt -s histappend

keep plenty of history
HISTSIZE=65000
useful on systems with shared home directories

HISTFILE=${HOME}/.bash_history-$(hostname)
keep track of time

HISTTIMEFORMAT='%F %T %Z # '

66

HISTORY RECALL

Arrow up/down cycles through previous commands.
Ctrl-R reverse search in history
type Ctrl-R again to cycle back through matches
or type more characters to refine the search term
press enter to rerun the found command
or press arrow keys to edit the command line

67

RECALL THE LAST ARGUMENT

Seeing is believing.
stat /some/path/to/file
now I want to run cat on the same file

cat <ESC><.>
cat /some/path/to/file

68

PROMPT

.bashrc

This shows:

Shows host name, working directory and current git
branch.

PS1='\u@\h:\w \A $(__git_ps1 " (%s)")\$ '

a07@lena:/project/newton 11:24 (master)$

69

ALIASES

The interactive flag on dangerous commands are your
training wheels.

alias ls='ls --color=tty'
alias ll='ls -lhF'

alias rm='rm -i'
alias mv='mv -i'

70

KEEPING NOTES
use script to capture an entire session
run a jupyter notebook with a
emacs org-mode babel extension

bash kernel

71

https://github.com/takluyver/bash_kernel

SCRIPTING
Write myscript.sh:

And then run it like

my first script
echo "This is my first shellscript"

bash ./myscript.sh

73

Turn it into an executable like so:

followed by

#!/bin/bash
my first script

echo "This is my first shellscript"

chmod +x myscript.sh

./myscript.sh

74

ESCAPING
Make a habit out of always quoting variables like so:

and you will never go wrong.

"${var}"

75

EVAL IS EVIL

Do not use eval ever.

By the time you think you need eval, you need to switch
to a real programming language.

76

PARSING COMMAND-LINE OPTIONS
#!/bin/sh
proxyhost=login.nikhef.nl

proxyport=8888
while getopts :h:p: OPT; do

 case $OPT in
 h|+h) proxyhost="$OPTARG" ;;
 p|+p) proxyport="$OPTARG" ;;

 *) echo "usage: `basename $0`"\
 "[+-h proxyhost] [+-p proxyport} [--] ARGS..."

 exit 2 ;;
 esac
done

shift `expr $OPTIND - 1`
OPTIND=1
ssh -n -N -f -D "$proxyport" "$proxyhost" "$@"

77

DANGERS OF QUOTES

Jeff thoroughly tested the following code. Then he
changed one line. What went wrong?

#!/bin/bash
clean up leftover files
echo 'running in test mode'
echo 'now it's running in production'
path=var/batch/jobs
it's ok to drop old file
retention="30"
find /$path -type f -mtime +$retention -exec rm {} +

78

#!/bin/bash
clean up leftover files
echo 'running in test mode'
echo 'now it's running in production'
path=var/batch/jobs
it's ok to drop old file
retention="30"
find /$path -type f -mtime +$retention -exec rm {} +

#!/bin/bash

clean up leftover files
echo 'running in test mode'
echo 'now it's running in production'

path=var/batch/jobs
it's ok to drop old file
retention="30"

find /$path -type f -mtime +$retention -exec rm {} +

79

DEBUGGING SHELL SCRIPTS
You will find yourself at times pondering why your shell
script went south. Here is what you do next.

80

DON’T IGNORE ERRORS
echo $?

81

FAIL EARLY AND GRACEFULLY
set -e
trap 'fail $LINENO' ERR

fail() {
 echo "error on line $1" >&2

}

82

INPUT, OUTPUT, ERRORS?
input stdin 0
output stdout 1
output stderr 2

83

REDIRECTIONS

Redirect both output streams to separate files.
run=`date -u +%FT%T`
./analysis.sh > "output.$run" 2> "err.$run"

84

DEBUGGING STATEMENTS
echo "now starting the frobnicator" >&2

85

TRACES

Renders:

set -x
foo=somevalue

echo $foo
set +x

echo done

+ foo=somevalue
+ echo somevalue
somevalue
+ set +x
done

86

DEBUGGING—CHECK THE ENVIRONMENT

Dump the environment and check carefully:

PATH

LD_LIBRARY_PATH

LD_RUNPATH

PYTHONPATH

LANG, LC_*

87

KEEPING IT IN ONE FILE

For completeness sake, here we compound stdout and
stderr onto a single file.

Mind the ordering. First you need to send stdout to a file,
then you want to send stderr to the same stream.

./whatever.sh > all_the_output 2>&1

88

COMMON UNIX TOOLS
“do one thing and do it well.”

––help
man/info/tldr
Google

90

http://lmgtfy.com/?s=d&iie=1&q=how+do+i+select+every+second+row+of+a+text+file+in+unix

REGULAR EXPRESSIONS
Find e-mail addresses:

grep -E -o "\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}\b"

91

92

SOME OF THE MORE COMMON
TOOLS

Some classic tools have been upstaged by modern
alternatives, which bring more colour, git awareness and
general usefulness at the cost of a basic pureness. They
may not be generally available on all systems, and when
writing scripts it's perhaps best to avoid them.

Where such a fancier alternative exists, it's listed in
column 2.

93

TEXT MANIPULATION
cat bat just listed here for the most useless use of cat award
sed streamline editor with regular expression powers
awk the duct tape of Unix tools
grep ack find strings in files
sort order lines
jq sed and grep for JSON files

94

cut select fields from each line
diff meld show differences between files
head / tail tail -f is actually useful
tar roll directories into tarballs
gzip compress files or data streams

95

FILE SYSTEM
ls exa swiss army knife of file listings
find fd most of the time you want to use locate instead
touch create files out of nowhere, update timestamps
cp copy
mv move or rename
ln link
tee copy stdin to stdout and a file

96

rm really remove
rsync copy on steroids
which where is my executable?
stat what can we tell about a file
du ncdu disk usage
df duf file system free space

97

SYSTEM PROCESSES
ps procs list processes, like ps aux or ps -ef
top htop who is eating my cpu and memory?
kill sending signals
bg/fg background/foreground programs
lsof find open files
vmstat memory, buffers and io
free overview of memory

98

NETWORK
ip swiss army knife of network tools
ip addr show network addresses on this system
ip route show the routing table
ping see if we can reach a machine
dig query DNS
traceroute see which path takes us to a machine
ssh secure shell
nc netcat, less useless than cat
curl swiss army knife of the web

99

PACKAGE MANAGEMENT
apt/dpkg Debian’s package manager
yum/rpm Red Hat’s package manager
zypper OpenSUSE
pip Python package tool
conda More general packaging
dnf Fedora packaging

100

PIPELINES
Traditional Unix tools are designed to work with stream
processing in mind. With ‘pipes’, the tools can be linked
together like perls on a string.

Below are a few examples.

102

JOB MANIPULATION ON STOOMBOOT BATCH
SYSTEM

Find running jobs owned by user id and delete them (you
can only delete your own jobs, of course).

qdel `qselect -u dennisvd -s "R" `

103

FIND AND GREP

This traverses a directory and finds all files of a certain
name and then tries to grep for a certain pattern in these
files.

find . -type d \(-path */.svn \
 -o -path */.git \) -prune -o \

 -type f \(-name *.txt \) \
 -exec grep --color -i -nH -e searchterm {} +

104

MANIPULATE A SET OF PREDICTABLY
NUMBERED FILES

A set of 100 comma-separated data files is numerically
sorted on the second field, cut to only output fields 2, 4,
5, 6, 7, and 8, and then the last lines are saved to an
output file.

for i in `seq -f file-%03g.txt 1 100` ; do
 sort -t, -n -k2 $i | cut -d, -f2,4-8 | \

 tail -n 1 > ${i%.*}.ord
done

105

DISK USAGE REPORT

Show which file/directory uses the most disk space.

du -s * | sort -n

106

MOST RECENTLY CHANGED FILES
ls -lrt # sort by timestamp
find . -mmin -10 -ls # find files changed in the last 10 minutes

107

EDITING FILES
At some point you will need to edit files: source code,
LaTeX files, shell scripts, configuration files…

Modern Linux systems have plenty of editors to choose
from.

109

EMACS
The thermonuclear word processor
Everything and the kitchen sink
Now with org-mode

110

EMACS
The thermonuclear word processor
Everything and the kitchen sink
Now with org-mode

T ≈ 1000
I ≈ ∞
R ≈ 100

110

Emacs has a reputation for being slow and bloated, as
well as overly complex. In truth, this editor has stood the
test of time. There is active development and a ton of
packages for every type of file and every type of
workflow.

cons pros
not generally installed everywhere can edit files remotely
steep learning curve built-in documentation
encourages heavy customisation superbly extensible

111

VIM
Originally vi, its pedigree going back to the original editor
called ed.

112

VIM
Originally vi, its pedigree going back to the original editor
called ed.

T ≈ 1000
I ≈ 10
R ≈ 3

112

The original text editor of Unix. Nowadays it is actually
“VI Improved” or VIM, which is much more powerful. The
graphical version is called gvim. It can be personalised
and extended.

cons pros
editing modes require
practice

powerful editing with very few
keystrokes

limited extensibility installed on nearly every system
strictly just an editor Remote editing at lightning speed

113

SCREEN/TMUX
Sometimes you remote session should last longer than
your workday. Or your laptop’s battery.

The screen utility allocates a pseudo terminal attached to
a background process independent of your session. You
can run multiple shells in a screen and manoeuvre
around with the Ctrl-A prefix. Type Ctrl-A ? for a help
screen.

115

The tmux utility is a remake of screen, with modernised
session handling, scripting, split screen, and ease of use.
It is still less ubiquitous than screen so you may not have
the option to run it unless you bring your own.

116

GIT
Version control of all your work, notes, programming, etc.

Nikhef has a .public gitlab

T ≈ 100

I ≈ 10

R ≈ 2

118

https://gitlab.nikhef.nl/

WORKFLOWS

(This may not be your choice to make.)

gitflow
OneFlow

119

https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://endoflineblog.com/oneflow-a-git-branching-model-and-workflow

SECURITY
Security considerations are usually not at the top of
everyone’s priority list. The adage: “Convenience, Speed,
Security: pick two” might as well be

Convenience, speed, security: we know
you will pick convenience and speed.

121

RULE 1

Talk to the experts. At least once.

122

WHAT DO THE EXPERTS SAY?

As an aside, the experts are extremely pessimistic about
our ability to keep the bad guys at bay forever. We read
about data breaches at large companies, hospitals, and
government organisations on a daily basis.

The best we can hope to do is be prepared and have
adequate damage control in place.

123

RULE 2—PASSWORDS

Treat passwords with extreme care.

Passwords are considered ‘something only you know’, but
as soon as you write them down somewhere, on a piece
of paper or in a file, you could inadvertently share this
with others.

124

Never put passwords in a script. There is always a better
way. Be aware that passwords typed on the command
line will appear in your history file.

125

RULE 3—DATA

Where does this data go? Who has access to it? The GDPR
is very strict on how to handle personal information.

For Nikhef, personal data includes user identities.

This means that publishing the output of qstat on a
personal web page is already a violation!

126

RULES 4 THROUGH

protect your security tokens (ssh private key)
strong passwords
different passwords everywhere
do not log in from a public computer
encrypt your phone
encrypt your laptop
encrypt your grandmother
program with a deep mistrust of human beings

∞

127

TEMPORARY FILES AND
DIRECTORIES

Established practice for safely creating temporary files is
by using mktemp.

This takes care of creating a new file with a randomised
name that is guaranteed to be owned by the user.

tmpfile=`mktemp`
tmpdir=`mktemp -d`

128

USING PASSWORDS IN SCRIPTS
Sometimes scripts need to use a password to
authenticate or unlock. The script can read the password
from stdin and keep it in a local variable for the time that
it is needed.

Be aware that putting passwords on the command-line
means that it will show up in the process list.

stty -echo
echo "enter password:"
read passwd
stty echo
mkproxy --passin - <<<$passwd
unset passwd

129

FINALLY
Learn just enough Linux to get things done

Learning git branching

Advanced Bash-Scripting Guide

5 modern alternatives to essential Linux command-
line tools

http://alexpetralia.com/posts/2017/6/26/learning-
linux-bash-to-get-things-done

https://learngitbranching.js.org/

http://tldp.org/LDP/abs/html/

https://opensource.com/article/20/6/modern-linux-
command-line-tools

131

http://alexpetralia.com/posts/2017/6/26/learning-linux-bash-to-get-things-done
https://learngitbranching.js.org/
http://tldp.org/LDP/abs/html/
https://opensource.com/article/20/6/modern-linux-command-line-tools

Focus Hard. In Reasonable Bursts. One Day at a Time.

#Linux on Freenode.net IRC

Gitlab server at Nikhef

https://www.calnewport.com/blog/2009/08/20/focus-
hard-in-reasonable-bursts-one-day-at-a-time/

https://freenode.linux.community/how-to-connect/

https://gitlab.nikhef.nl/

132

https://www.calnewport.com/blog/2009/08/20/focus-hard-in-reasonable-bursts-one-day-at-a-time/
https://freenode.linux.community/how-to-connect/
https://gitlab.nikhef.nl/

Let me Google that for you

Emacs Org mode (it made this!)

Reveal.js (it also made this!)

http://bfy.tw/FDe5

http://orgmode.org/

https://revealjs.com/

133

http://bfy.tw/FDe5
http://orgmode.org/
https://revealjs.com/

