Improving the charge collection efficiency in GridPix

Kevin Heijhoff

2016-03-07

Overview

Overview

2 GridPix Model

- Amplification gap and drift region
- TPX3 pixel chip
- Pixel pad enlargement
- 3 Charge Collection
 - Shockley-Ramo theorem
 - Electron ion pair
 - Avalanche
 - Protection layer
- Meshing and electric field calculation
- Simulating avalanches with Garfieldpp
- 6 Charge collection efficiency
 - TPX3
 - Enlarged pixel pad
- Conclusion

GridPix Model — Amplification gap and drift region

Grid
Pix Model — TPX3 pixel chip

- Need pixel plane model for signal calculation
- First find out what TPX3 really looks like
- $\bullet\,$ Pad diameter is $18\,\mu{\rm m}$
- Passivation opening diameter is 12 µm

Kevin Heijhoff

GridPix Model — TPX3 pixel chip

Kevin Heijhoff

Improving charge collection in GridPix

2016-03-07 5 / 23

GridPix Model — Pixel pad enlargement

Charge Collection — Shockley-Ramo theorem

• Instantaneous current on pad:

$$I = -q\,\mathbf{\psi}\cdot\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$$

with $\psi = \frac{\mathbf{E}_w}{1\,\mathrm{V}}$

• Integrated signal of charge q moving from **r**₀ to **r**₁:

$$Q = \int_{t_0}^{t_1} \mathrm{d}t \, I = q \left[\phi\left(\mathbf{r}_1\right) - \phi\left(\mathbf{r}_0\right) \right]$$

with ϕ such that $\mathbf{\psi} = -\nabla \phi$

Charge Collection — Electron ion pair

• Charge induced by electron:

$$Q_{-} = [\phi_{-} - \phi_{0}] e^{-}$$

• Charge induced by ion:

$$Q_{+} = [0 V - \phi_0] (-e^{-}) = \phi_0 e^{-}$$

• Total signal charge:

$$Q = Q_+ + Q_- = \phi_- e^-$$

Charge Collection — Avalanche

• Charge induced by electron:

$$Q_{-} = \sum_{n=1}^{N} \left[\phi_{-,n} - \phi_{0,n} \right] e^{-} = \left[\bar{\phi}_{-} - \bar{\phi}_{0} \right] N e^{-}$$

• Charge induced by ion:

$$Q_{+} = \sum_{n=1}^{N} \phi_{0,n} e^{-} = \bar{\phi}_{0} N e^{-}$$

• Total signal charge:

$$Q = Q_+ + Q_- = \bar{\phi}_- N e^-$$

Charge Collection — Avalanche

• Electrons move very fast compared to ions

	$v_{\rm drift} [\mu {\rm m} {\rm ns}^{-1}]$
electrons	230
ions	0.74

• For a 60 µm amplification gap:

$$Q (t = 0) = 0$$

$$Q (t \approx 0.26 \text{ ns}) = Q_{-}$$

$$Q (t \approx 81 \text{ ns}) = Q_{+} + Q_{-}$$

Charge Collection — Protection layer

- Protection layer is slightly conductive
- How does this affect the signal calculation?

Charge Collection — Protection layer

• After an avalanche:

$$\sigma\left(t=0\right) = \frac{Q_{\text{ava}}}{55 \times 55 \,\mu\text{m}^2}$$

• This sets up a current density inside the protection layer:

$$\mathbf{J} = \frac{\mathbf{E}}{\rho} = -\frac{\sigma}{\rho \, \epsilon} \, \hat{\mathbf{e}}_z$$

• The surface charge now changes as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \mathbf{J} \cdot \hat{\mathbf{e}}_z = -\frac{\sigma}{\rho \, \epsilon} \quad \Rightarrow \quad \sigma \left(t \right) = \sigma \left(0 \right) \exp \left(-\frac{t}{\rho \, \epsilon} \right)$$

• Any change in the signal will be on a time scale of $\rho\,\epsilon$

Charge Collection — Protection layer

- Preamplifier output returns to baseline in $\sim 1\,\mu s$
- For SiRN, ρ is somewhere in the range of $10^9-10^{13} \Omega \text{ m}$. So, $\rho \epsilon$ is somewhere in the range of 60 ms-600 s
- Therefore, we can safely regard the protection layer as an insulator for signal calculations

$\frac{6 \text{ k}e^{-}}{50 \frac{\text{mV}}{\text{k}e^{-}}} \int_{-\infty}^{\infty} I_{\text{Krum}} = 2 \text{ nA}$ $\frac{1}{\sqrt{100 \text{ ns}}} - 1 \text{ µs}$ $\frac{1}{\sqrt{100 \text{ ns}}} - 1 \text{ µs}$

Preamplifier output

Kevin Heijhoff

Meshing and electric field calculation

- Use mirror symmetries to reduce number of finite elements in field and detector simulation
- Boundary condition on planes of mirror symmetry: $\nabla V \cdot \hat{n} = 0$
- Only simulate fields in shaded region

Meshing and electric field calculation

- We mesh the geometry with Gmsh
 - 3D finite element grid generator (free software)
- We use Elmer to calculate the field
 - Open source multiphysical simulation software mainly developed by CSC-IT Center for Science
- To save CPU, the mesh only extends up to 123 µm. Above that, the field is constant.

Meshing and electric field calculation — TPX3

Mesh

Meshing and electric field calculation — Enlarged pad

Mesh

Improving charge collection in GridPix

Kevin Heijhoff

Meshing and electric field calculation — Speeding up Garfield++

- FindElement function was taking up > 90 % of computation time
- Measure average time to find elements along an electron track consisting of 7695 points
- Garfield++'s FindElement: $\mathcal{O}(n)$
- Improved FindElement: $\mathcal{O}(\log n)$
- Speedup for my mesh:
 - FindElement: ~ 62 times faster
 - Garfield++: ~ 25 times faster

Kevin Heijhoff

Simulating avalanches with Garfield++

Charge collection efficiency — TPX3

Charge collection efficiency distribution

Entries	8.1×10^4
Mean	0.55
RMS	0.07

Charge collection efficiency — Enlarged pixel pad

Improving charge collection in GridPix

2016-03-07 21 / 23

Charge collection efficiency — Enlarged pixel pad

Improving charge collection in GridPix

2016-03-07 22 / 23

Conclusions

Conclusions:

- Increasing the pixel pad size will increase the charge collection efficiency
- Alternatively, the gas gain can be reduced to increase the durability

Time dependent signal

Improving charge collection in GridPix

2016-03-07 24 / 23

Speeding up Garfield++

- FindElement function was taking up > 90 % of computation time
- Measure average time to find elements along an electron track consisting of 7695 points
- Garfield++'s FindElement: $\mathcal{O}(n)$
- Improved FindElement: $\mathcal{O}(\log n)$
- Speedup for my mesh:
 - FindElement: ~ 62 times faster
 - Garfield++: ~ 25 times faster

Kevin Heijhoff

Charge buildup

Kevin Heijhoff

Improving charge collection in GridPix

2016-03-07 26 / 23