Detection of 27 GHz single electron cyclotron radiation in the PTOLEMY detector

Federico Virzi

7/10/2022

- I have joined PTOLEMY collaboration in 2021
- Master thesis on the detection of high frequency RF signal in the PTOLEMY filter
- I will be PhD student of Univaq at the LNGS on the PTOLEMY project for the next three years

PTOLEMY EM filter Goal

Antenna region:

• Estimate K with $\Delta K = 10 eV$

Filter electrodes:

- Filter e^- from target with $\Delta K = 10 eV$ around Tritium Q_eta
- Decrease K to O(10eV) for energy measurement

• We need this online ($\sim 10 \mu s$)

Antenna region

Fields:

- $\overrightarrow{E} = (0, E, 0)$
- $\overrightarrow{B} = (B,0,0)$

Electron in cyclotron motion:

- Cyclotron along X
- Bouncing motion along X
- Drift along Z
- No Y component

During the motion: RF emission

Antenna region

Measure $(P, f) \rightarrow (K_{\perp}, K)$

- $P\propto rac{K_{\perp}/E^2}{1-K/E^2}$
- $f_c = \frac{1}{2\pi} \frac{qB}{m} \frac{1}{K/m+1}$

For electron at $Q_{eta} = 18.6 \textit{keV}$:

- P = 1.2 fW = 7.3 eV/ms
- $f_c = 27.0 GHz$

With a $\Delta K \sim 10 eV \rightarrow$ $\Delta f = 100 kHz \rightarrow \Delta t = 10 \mu s$ The detection requires a proper electronic chain

- Measuring K, K_{\perp} in less than $10 \mu s$
- This information goes to the filter electrodes system

If the electron is selected to be:

- BKG electron \rightarrow filter sides
- Endpoint electron \rightarrow TES

EM Filter: fields

- Exponential decreasing B field
- E field by equipotential hills
- Electron lose Kinetic energy

Filtering is done by varying ${\sf E}$

RF readout chain requirements

RF electronics goal:

- RF Detection of $f_c = 27 GHz$ and P = 1 fW = -120 dBm
- Detection in $\Delta t = 10 \mu s \rightarrow RBW = 100 kHz$

 $P[W] = 10^{(P[dBm]-30)/10}$ $P[dBm] = 10Log_{10}(rac{P[W]}{1mW})$

- Decrease the frequency (down-conversion)
- Amplify the signal with **low noise**

RF readout chain

- Calibration stage
- Amplification stage
- Frequency mixer

Spectrum Analyzer: up to 26GHz

Cables

Cables:

- High frequency cables
- SMA connectors
- Cryogenic cable is O(50cm)

Calibration stage

- Frequency sinthesizer ADF5356S1DZ
- Passive frequency doubler
- Passive attenuators

P = -120 dBmf = 26 GHz

Amplification stage

- Friis law: $F_{tot} = F_1 + \frac{F_2 1}{G_1} + \frac{F_3 1}{G_1 G_2}$
- F_1 lowest possible \rightarrow Cryogenic Low Noise Amplifier (LNA)
- LNA LNF-LNC16-28WB) G = 29dB, NF = 0.086dB
- Amp ALN2225-38-4025) G = 39dB, NF = 2.5dB

Cryogenic LNA

Cryogenic system

- Two GM cold heads
- LNA mounted on copper support
- $T_{LNA} \simeq 25 K$
- I/O with RF flange

Amplification

- $G_{tot}(25K) = 60.5dB$
- RF reflections on I/O ports

Frequency Down-conversion

• $f_{IF} = f_{RF} - f_{LO}$, ADMV1014, $G_{mixer}(f_{IF} = 1GHz) = 17.5dB$

Results

Outlook

- \bullet Smaller RF cables \rightarrow less RF reflections
- Scattering parameters characterization
- Test with physical electrons (electron-trap)

Electron trap

- Signal from physical electron
- Study and test of RF detection with Doppler effect

Ribbon Potential

Conclusions

- EM Filter for BKG rejection and K decrease
- Rough and brief K measure in antenna region with RF measurement
- High frequency and low power detection