Modulating tritium binding on graphene related materials

Valentina Tozzini Guido Menichetti Istituto Nanoscienze – CNR, NEST–SNS, Pisa (NANO) Physics Dept, University of Pisa (Italy)

Collaboration and data provided also by:

Theory:	Marco Polini Tamiru Teshome Mamo Zacharias Fthenakis Luca Bellucci	Physics Dept, UniPi NANO, Pisa NANO, Pisa NANO, Pisa	
Expt:	Stefan Heun Stefano Veronesi Camilla Coletti Stiven Forti	NANO, Pisa NANO, Pisa NANO, Pisa IIT, Pisa IIT, Pisa	
			PTOLEMY-Zandvoort Oct 6th-7th 2022

Outline

- ✓ The problem
 - designing the potential for Tritium: how do we want it to be?
- ✓ The interaction of hydrogen with "graphene"
 - ✓ Which graphene?
 - Covalent binding vs van der Waals interaction, desorption vs hopping
 - Curvature and cooperative effect

Possible architectures

- Nanotubes
- ✓ Fullerites
- ✓ Epitaxial and layered
- ✓ Others
- Summary and perspectives

The problem: designing the potential for Tritium: how do we want it to be?

Dissociation/association profile of H_2 (T_2) in vacuo (tons of literature!)

- \checkmark The dissociation energy of H₂ is 4.478 eV (ϵ =2.239 eV/atom, T₂ value little larger)
- ✓ The dissociation curve is narrow $(\lambda \sim 0.5 \text{ Å}) \rightarrow$ the stiffness $\kappa = \epsilon/\lambda^2 \sim 9 \text{ eV/Å}^2$ is large!
- ✓ The curve flattens in the excited states

- We want T very weakly bound (i.e. a binding potential with low stiffness) Ideally,
- > We want T in atomic form
- ✓ The ground state of the H_2 (T_2) molecule is an electron spin singlet $\downarrow\uparrow$ with null total spin
- ✓ The energy profile for the spin triplet couple ↑↑ has a barrier to dimerization
- Atomic hydrogen can be stabilized as a gas in vacuo at high magnetic fields and low temperatures (kept for minutes at the density of 10²³/m³ at T=0.3K with B=10T)

L Lehtonen et al 2018 New J. Phys. 20 055010; Gillaspy PRB 1988; Silvera PRL 1980

	Bond length (Å)	E _d (eV)	notes
H ₂	0.7414	4.478	Ground state, spin singlet (expt)
H ₂	1.5	2.72	First electronic excited state (Theory)
D_2	0.742	4.556	Expt
T_2		4.591	Theory (accuracy 10 ⁻⁴)
HD		4.514	experimental
ΗT		4.527	Theory (accuracy 10 ⁻⁴)
DT		4.573	Theory (accuracy 10 ⁻⁴)

The problem: designing the potential for Tritium: how do we want it to be?

- ✓ We want T very weakly bound (i.e. a binding potential with low stiffness)
- ✓ We want T in atomic form

AND

✓ We want T in high concentration

One possibility to reconcile these conditions:

Chemisorption on graphene

Upon full hydrogenation of graphene sheet, one gets graphAne, the material which can store T at the closest distance (~2 Å, σ ~0.17 mg/m³))

+H

Chemisorption on graphene

Upon full hydrogenation of graphene sheet, one gets graphAne, the material which can store T at the closest distance (~2 Å, σ ~0.17 mg/m³))

- ✓ H on graphane was predicted to be stable enough
- (avg binding energy of H \sim 2.38 eV/atom, with respect to atomic H)
- ✓ Binding energy of isolated H on graphene ~0.8 eV/atom
- ✓ The chemisorption well is as large as H₂ pot, but 1/6 softer $\rightarrow \kappa = \epsilon / \lambda^2 \sim 1.5 \text{ eV}/\text{\AA}^2$

CNRNANO

Chemisorption on graphene – hopping and cooperative binding

PTOLEMY-Zandvoort Oct 6th-7th 2022

Tozzini et al JPCC 2011,

Chemisorption on graphene – effect of curvature

Partial summary & conclusions

system	Potential (equivalent stiffness)	Env conditions	density
Vacuum, T ₂	Very strong $(\kappa \sim 9 \text{ eV}/\text{Å}^2)$	Any	Up to 0.21 g/cm ³ (molecular liquid)
Vacuum, T_2^*	Less strong $(\kappa \sim 2 \text{ eV}/\text{Å}^2)$	Electronic excited state	
Vacuum, T	null $(\kappa \sim 0 \text{ eV}/\text{Å}^2)$	T ~0.3 K, B ~10 T	$\sim 0.5 \text{ g/m}^3=0.5 \mu \text{g/cm}^3$ (for minutes)
T:graphene	Less strong ($\kappa \sim 1.5-4 \text{ eV/}\text{Å}^2$)	Any	Up to 1.7 μ g/cm ² ~0.17g/cm ³ (graphAne)

 \checkmark Using graphene would hugely increase the tritium

concentration with respect to gaseous form...

But

 \checkmark The binding potential is still too stiff

However

Concavities could help solving the problem

A step backward... which graphene?

- ✓ Ideal = flat, infinite, suspended, 2D hexagonal crystal \rightarrow a dream (almost)
- Epitaxial = real, robust, different structures (C Coletti, S Heun)

- ✓ Nar
 - ✓ Nanoporous with edges and defects
 - From exfoliated graphite flakes inks upon gelation, dehydration, reduction... very cheap and scalable (V Pellegrini S Bonaccorso and others)
 - ✓ Nanoporous interconnected

PTOLEMY-Zandvc

Grown on nanoporous Ni Vast sp2 surfaces No defects (Di Bernardo et alACS Omega 2017)

A step backward... which graphene?

- Fullerenes come in different sizes and can be \checkmark crystallized in FCC (fullerite), a hard, stable, light (1.95g/cm³) crystal
- ✓ Carbon nanotubes come in different diameters (>5Å), can be capped, can be organized in bundles and ropes
- ✓ Pillared multilayers spaced by nanotubes or organic molecules

Very difficult synthesis!

Can any of these

issues?

best?

materials solve our

And which one is the

Lert's start from nanotubes

- In the whole series of nanotubes, we choose those with the smallest possible diameter synthesized
- We included two atoms of T in the tube and calculate the energy of the system as they get near (DFT quantum calculation including electronic structure and full relaxation)
- ✓ The calculation is performed either letting free the spin state, or in singlet and triplet

However, there is still a covalently bound state, separated by a ~0.5eV barrier

PTOLEMY-Zandvoort Oct 6tl

Nanotubes

✓ The anti-dimerization effect of an external magnetic field will be enhanced!

Fullerenes

 Homologous calculations were performed on fullerene, moving a caged T towards a C site or towards the center of a pentagon

Fullerenes & fullerite

- Within the fullerite crystal the cage deformation might be prevented by crystal restrains, and spin transfer might be prevented by spin cooperation
- The bound state might be destabilized within the crystal
- Simulations are in the course!

CNRNANO

In addition: Fullerenes can be passivated in different ways, e.g. with hydrogen or by boron doping

(a.u) 0.5

0

1.5

0

Ξ

(eV)

^배 0.5

Fullerite does not need external magnetic field to prevent dimerization

1

Fullerite can store T with a density of ~0.004 g/cm³

PTOLEMY-Zandvoort Oct 6th-7th 2022

2

m_{քոյլ}

3

Summary storage of Tritium				
system	Potential (equivalent stiffness)	Env conditions	density	
Vacuum, T ₂	Very strong $(\kappa \sim 9 \text{ eV}/\text{Å}^2)$	Any	Up to 0.21 g/cm ³ (molecular liquid)	
Vacuum, T_2^*	Less strong $(\kappa \sim 2 \text{ eV}/\text{Å}^2)$	Electronic excited state		
Vacuum, T	null $(\kappa \sim 0 \text{ eV}/\text{Å}^2)$	T ~0.3 K, B ~10 T	$\sim 0.5 \text{ g/m}^3 = 0.5 \mu \text{g/cm}^3$ (for minutes)	
T:graphene	Less strong ($\kappa \sim 1.5-4 \text{ eV/}\text{\AA}^2$)	Any	Up to 1.7 $\mu g/cm^2 \sim 0.17 g/cm^3$ (graphAne)	
T@fullerite	Flat, quartic or sextic with κ dependent on the radius; possible bound state prevented by passivation	Any; B not needed to prevent dimerization, but might help in prevent binding	Up to ~0.0036 g/cm ³ = 3.6 mg/cm ³	
T@nanotube	Flat along the axis; parabolic with radius dependent κ in radial dir; possible bound state prevented by passivation	Any; (weak) B to prevent dimerization	Up to ~ 0.02 g/cm ³ = 20 mg/cm ³	

Encapsulated fullerenes and nanotube seems very promising materials

Digression: production of encapsulated fullerenes (notes from a NON expert)

- ✓ Structural electronic and magnetic properties of encapsulated H in fullerenes of various sizes and kinds were theoretically studied for long (e.g. Javan et al Curr Appl Phys 2013)
- ✓ Experimentally, H₂ was encapsulated in fullerenes following a chemical route (Murata et al JACS 2006), but encapsulation of atomic H is elusive (Estreicher et al Chem Phys Lett 1992)
- ✓ A mechanism involving dissociation-adsorption external surface and flipping was proposed by simulations to occur if fullerenes are exposed to beams of atomic H at specific kinetic energy (Beadmore et al JP Cond mat 1994)
- ✓ Conversely, encapsulation of monoatomic metal ions (Li+ Na+ K+) or other elements (N) but also rare-earth, Lantanidies and Actinidies (see e.g. Cai et al Acc Chem Res 2019 and Popov et ale Chem Rev 2013) was achieved. These are mostly synthesized chemically and fully characterized
- Encapsulation within nanotubes generally follows the physical route (i.e. inclusion and capping, see e.g. Cadena et al Oxford Open Material Sci 2021)

Further ideas

$\checkmark\,$ The buffer layer on SiC

- Has reactive protruding spikes...
- > Which could be easily passivated wit H
- Once this is done, the system is left with rather flat and hydrophobic basins which could host a single T almost free to move

This system could host $\sim 0.2 \text{ ng/cm}^2$ of T

✓ Nanoporous graphenes

 Can host H₂ (T₂) but atomic H(T) covalently might bind on defects

10

Path (Å)

- In defectless nanoporous graphene, atomic H is less prone to chemisorb, but the 10nm cavities are too large to prevent recombination as in fullerenes
- However, these cavities are the proper size to host fullerenes cages, possibly encapsulated with T

Further ideas (more challenging)

✓ Nanoporous graphenes

- Can host Metal small clusters
- These can split H₂ (e.g. Pt) or bind it with energies intermediate between physi and chemisorption (e.g Ti)

This may bind loosely H and avoid dimerization Takahashi et al JPCC 2016

✓ Metal organic frameworks

- Can host large quantities of gases
- Can be built by chemical routes in a variety of different structures
- Can be functionalized in a variety of different ways, and endowed also with magnetic properties

pumping gases through multilayers (or nanotubes) Through coherent phonons

phonons can create flux of particles Can be use to flux tritium through nanotubes Or multilayers

Camiola et al 2Dmater 2015

Summary and conclusions

- Binding energies and hopping barriers of H on graphene related materials can be modulated in various ways: structure and dynamics, chemical or electric doping...
- Concavities as within small nanotubes or fullerene seems optimal conformations to keep the sliding profile very flat
- Simulations are in the course search for the optimal sizes and structures
- Further investigation on materials to obtain a similar effect on 2D surfaces are in the course
- Investigation on 3D graphene-derived different materials (multilayers or nanoporous) are in the course
- Combination with transition metal clusters and with external magnetic field may enhance the effects

There still much room for design and engineering!

Thank you for your attention

Theo

Guido Menichetti	
Marco Polini	
Tamiru Teshome Mamo	
Zacharias Fthenakis	
Luca Bellucci	
Francesco Delfino	

Expt:

Camilla Coletti
Stiven Forti
Stefan Heun
Stefano Veronesi

Physics Dept, University of Pisa (Italy) Physics Dept, UniPi NANO, Pisa NANO, Pisa NANO, Pisa NANO, Pisa

IIT, Pisa IIT, Pisa NANO, Pisa NANO, Pisa

