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Dark Matter with Aligned Carbon Nanotubes
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DM ‘Wind’

DM

e-
DM-electron scattering in a target of  
vertically-aligned carbon nanotubes

Detection of keV electrons

The ‘Dark-PMT’

Electron energy = ∆V(anode-cathode)

Would like to keep ∆V < 10 kV

Key parameter: high efficiency

Secondary parameter: energy resolution 
(need to distinguish 1e- vs 2e-)
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The ANDROMeDa Project
❖ Awarded PRIN2020 grant (1M€)


• 3-year project, started in May 2022


• 3 units:  INFN (FP, P.I.), Sapienza (G. Cavoto) 
Roma Tre (A. Ruocco)


❖ Objective: development of Dark-PMT prototype


❖ Three workpackages:


1. Superior synthesis of carbon nanotubes


2. High-efficiency keV electron reconstruction


3. Dark-PMT prototype design and construction
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Ilaria’s talk

this talk and Alessandro’s talk
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Detecting keV Electrons with Silicon Detectors

❖ Produced by Hamamatsu 

❖ Simple, cost-effective


❖ Produced by FBK + 
electronics by PoliMi


❖ Ultimate energy resolution
4

Born as photon detectors 
‘Windowless’ versions for electrons 

Silicon oxidation → dead layer

Benchmark technology: 
Avalanche Photodiode (APD)

Backup technology: 
Silicon Drift Detector (SDD)
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Electron Gun Facility @ LASEC Labs (Roma Tre)

❖ Hot tungsten filament + electrostatic lenses


• Electron energy: 30 < E < 1000 eV


• Energy spread: 45 meV


• Beam spot: 0.5 mm 


• Beam current as low as a few fA

5

e- gun

APD

i.e. electrons at ~10 kHz (not bunched) 
→ Can probe single-electron regime



PTOLEMY Collaboration Meeting, 07.10.22Francesco Pandolf

Hunting for Single-Electron Signals with APDs
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A. Apponi et al 2020 JINST 15 P11015 

Measured APD current 
generated by electrons…

… but didn’t see  
single-electron pulses
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1. compactness, so as to have a portable dark-PMT detector; 

2. high (>90%) efficiency on single-electron detection in the keV energy range; 

3. percent-level discrimination between single-electron and double-electron events; 

4. suppression at permil level of fake single-electron signals due to noise. 

Furthermore, as will be shown in section (b), in order to achieve the ANDROMeDa performance of Fig.B2-
1.2, two additional requirements are needed: 

5. large active area (≥1 cm2), to pair each sensor to a 10 cm2 cathode with a 10:1 lensing system; 

6. cost-effectiveness, to be replicated in a few hundred dark-PMT units. 

ANDROMeDa will mainly rely on the use of commercial silicon detectors such as avalanche photo-diodes 
(APDs) and silicon drift detectors (SDDs). These detectors are widely used for the detection of photons in 
various energy ranges, from visible light to x-rays, by absorbing them in a depleted p-n junction, where an 
electron-hole pair is created and amplified by an internal gain to form a measurable electric signal.  

Silicon sensors can also be used to detect sub-MeV electrons, by completely absorbing them in the 
detector mass and measuring the electron-hole pairs created in the process. However, electrons have a range 
of absorption which is typically much smaller than the corresponding absorption length of photons. 
Therefore, to avoid the electrons being absorbed before reaching the active p-n junction, it is necessary to 
minimize the thickness of the inert layer. This requires the use of window-less silicon sensors, in which the 
silicon is directly exposed to the vacuum. 

 
 
Fig.B2-3.1 APD bias current as a function of the electron gun current, for 
900 eV electrons produced at LASEC labs in RomaTre University [ap]. 

 

Extensive tests were conducted at the RomaTre LASEC Ultra-High 
Vacuum (UHV) chamber where a custom electron gun was used to 
produce an electron beam with adjustable energy in a range between tens 
of eV and 1 keV, with 50 meV resolution and a sub-mm beam spot. A 
windowless APD with internal gain of O(100) was irradiated with an 

electron current as low as 100 fA at different energies. The results are shown in Fig.B2-3.1 [ap]: as can be 
seen the APD bias current shows a clear linear dependence on the electron gun current, validating this 
technique in testing silicon sensor electron reconstruction. 

 

Fig.B2-3.2 Left: response of 
large-area APDs to electrons in 
the 5-35 keV energy range [ka]. 
Right: SDD response to 20 keV 
electrons (red) and to 55Fe gamma 
rays (blue) [gu].  

  

 

 

However, for it to be used in the dark-PMT an electron sensor needs to reach single-electron sensitivity. 
APDs are simple and cost-effective, and recently published results [ka] have shown that they are capable of 
resolving single-electron signals, but only for energies above 5 keV (see left panel of Fig.B2-3.2). SDDs 
have been shown [gu] to provide ultimate single-electron energy resolution in that same energy range (see 
right panel of Fig.B2-3.2), but are characterized by higher complexity and manufacturing costs. 

 

 

S. Kasahara, et al.,  
IEEE Trans. Nucl. Sci. 57 (2010) 1549

Literature: need  
E ≥ 5 keV to see 
single-electron 
signals with APDs
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SDDs Capable of Measuring keV Electrons
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G.Gugiatti, et al., NIM A 979 (2020) 164474 
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Electron gun:  
excellent resolution 
for 5 < E < 20 keV
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Planned: Tests @ Milano Bicocca Electron Gun

❖ Custom gun (photoelectric effect)


• Electron energy 0 < E < 30 keV


• Energy spread ~ 2 eV


• Beam spot ~ 1 mm


• Beam current as low as a few fA


❖ Planned campaign (Oct/Nov 2022)


❖ Physics program:


• Observe keV electrons with APD and SDD


• Measure energy resolution


• Study response as a function of angle 
and sensor surface position


• Measure single-e- detection efficiency  
(for this need stable current)
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Conclusions

❖ ANDROMeDa aims to develop novel dark matter detector 


• Target made of carbon nanotubes


❖ Key challenge: high-efficiency detection of keV electrons


• With silicon APDs or SDDs


❖ Two (single-)electron gun facilities (I ~ few fA)


• LASEC@RomaTre: 0 < E < 1 keV


• Milano Bicocca: 5 < E < 20 keV

9
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We’re opening two 24-month 
post-doc positions in Rome!


