Use of Electron Guns for Detector Characterization

Francesco Pandolfi

INFN Rome

Gianluca Cavoto, Carlo Mariani, Ilaria Rago Sapienza University and INFN Rome

Alice Apponi, Alessandro Ruocco Roma Tre University and INFN Rome 3

PTOLEMY Collaboration Meeting, Zandvoort, 7.10.22

Aligned Nanotube Detector for Research On MeV Darkmatter

Dark Matter with Aligned Carbon Nanotubes

Francesco Pandolfi

The ANDROMeDa Project

Awarded PRIN2020 grant (1M€)

- 3-year project, started in May 2022
- 3 units: INFN (FP, P.I.), Sapienza (G. Cavoto) Roma Tre (A. Ruocco)
- **Objective:** development of Dark-PMT prototype *
- Three workpackages: *
 - 1. Superior synthesis of carbon nanotubes
 - 2. High-efficiency keV electron reconstruction
 - 3. Dark-PMT prototype design and construction

Francesco Pandolfi

PTOLEMY Collaboration Meeting, 07.10.22

Aligned Nanotube Detector for Research On MeV Darkmatter

Detecting keV Electrons with Silicon Detectors

Born as photon detectors 'Windowless' versions for electrons Silicon oxidation \rightarrow dead layer

HPK S11625-30N

Produced by Hamamatsu

Francesco Pandolfi

ark technology: Photodiode (APD)

PTOLEMY Collaboration Meeting, 07.10.22

Backup technology: Silicon Drift Detector (SDD)

- Produced by FBK + electronics by PoliMi
- Ultimate energy resolution

Electron Gun Facility @ LASEC Labs (Roma Tre)

Hot tungsten filament + electrostatic lenses *

- Electron **energy**: 30 < E < 1000 eV
- Energy spread: 45 meV
- Beam spot: 0.5 mm
- Beam current as low as a few fA

i.e. electrons at ~10 kHz (not bunched) Can probe single-electron regime

Francesco Pandolfi

Planned: Tests @ Milano Bicocca Electron Gun

- Custom gun (photoelectric effect)
 - Electron energy 0 < E < 30 keV
 - Energy spread ~ 2 eV
 - Beam **spot** ~ 1 mm
 - Beam current as low as a few fA

Francesco Pandolfi

- Planned campaign (Oct/Nov 2022)
- Physics program:
 - Observe keV electrons with APD and SDD
 - Measure energy resolution
 - Study response as a function of angle and sensor surface position
 - Measure single-e⁻ detection efficiency (for this need stable current)

Conclusions

- ANDROMeDa aims to develop novel dark matter detector
 - Target made of carbon nanotubes
- Key challenge: high-efficiency detection of keV electrons
 - With silicon APDs or SDDs
- Two (single-)electron gun facilities (I ~ few fA) *
 - **LASEC@RomaTre:** 0 < E < 1 keV
 - **Milano Bicocca:** 5 < E < 20 keV

Francesco Pandolfi

Conclusions

- ANDROMeDa aims to develop novel dark matter detector
 - Target made of carbon nanotubes
- Key challenge: high-efficiency detection of keV electrons
 - With silicon APDs or SDDs
- Two (single-)electron gun facilities (I ~ few fA)
 - LASEC@RomaTre: 0 < E < 1 keV
 - Milano Bicocca: 5 < E < 20 keV

Francesco Pandolfi

